Cargando…

Interval Analysis : and Automatic Result Verification /

This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through man...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mayer, G. (Günter) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2017]
Colección:De Gruyter studies in mathematics ; 65.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn984647843
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 170419s2017 gw ob 001 0 eng d
010 |a  2017288658 
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d GWDNB  |d DEGRU  |d OCLCQ  |d EBLCP  |d YDX  |d IDEBK  |d MERUC  |d VGM  |d STF  |d OCLCO  |d OCLCQ  |d OCLCO  |d NRC  |d CUS  |d OCLCQ  |d OCLCO  |d COCUF  |d LOA  |d CUY  |d ZCU  |d ICG  |d K6U  |d VT2  |d U3W  |d WYU  |d OCLCQ  |d LVT  |d TKN  |d DKC  |d UKAHL  |d OCLCQ  |d UMI  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
016 7 |a 1130283356  |2 DE-101 
016 7 |a 113531859X  |2 DE-101 
019 |a 983733377  |a 1055375428  |a 1066470266  |a 1081240066  |a 1159595454  |a 1228554782  |a 1241882194  |a 1290067030  |a 1300540987 
020 |a 9783110499469 
020 |a 3110499460 
020 |a 9783110498059 
020 |a 3110498057 
020 |z 3110500639 
020 |a 9783110500639 
020 |a 3110500639 
020 |a 9783110499476 
020 |a 3110499479 
024 7 |a 10.1515/9783110499469  |2 doi 
024 3 |a 9783110499469 
024 7 |a urn:nbn:de:101:1-201704192952  |2 urn 
024 3 |a 9783110498059 
024 7 |a urn:nbn:de:101:1-201706141932  |2 urn 
024 8 |a 40027155563 
029 1 |a AU@  |b 000060698913 
029 1 |a GWDNB  |b 1130283356 
029 1 |a GWDNB  |b 113531859X 
029 1 |a AU@  |b 000066766547 
029 1 |a AU@  |b 000073100427 
035 |a (OCoLC)984647843  |z (OCoLC)983733377  |z (OCoLC)1055375428  |z (OCoLC)1066470266  |z (OCoLC)1081240066  |z (OCoLC)1159595454  |z (OCoLC)1228554782  |z (OCoLC)1241882194  |z (OCoLC)1290067030  |z (OCoLC)1300540987 
037 |a 1006393  |b MIL 
050 4 |a QA297.75  |b .M39 2017 
072 7 |a COM051300  |2 bisacsh 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT041000  |2 bisacsh 
082 0 4 |8 1\p  |a 510  |q DE-101 
084 |a 510  |q DE-101  |2 sdnb 
049 |a UAMI 
100 1 |a Mayer, G.  |q (Günter),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJpjc9HFtxQf68yb96PRKd 
245 1 0 |a Interval Analysis :  |b and Automatic Result Verification /  |c Günter Mayer. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (532 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a De Gruyter Studies in Mathematics ;  |v 65 
546 |a In English. 
588 0 |a Online resource; title from PDF title page (publisher's Web site, viewed Apr. 18, 2017). 
505 0 0 |6 880-01  |t Frontmatter --  |t Preface --  |t Contents --  |t 1. Preliminaries --  |t 2. Real intervals --  |t 3. Interval vectors, interval matrices --  |t 4. Expressions, P-contraction, [epsilon]-inflation --  |t 5. Linear systems of equations --  |t 6. Nonlinear systems of equations --  |t 7. Eigenvalue problems and related ones --  |t 8. Automatic differentiation --  |t 9. Complex intervals --  |t Final Remarks --  |t Appendix --  |t A. Proof of the Jordan normal form --  |t B. Two elementary proofs of Brouwer's fixed point theorem --  |t C. Proof of the Newton-Kantorovich Theorem --  |t D. Convergence proof of the row cyclic Jacobi method --  |t E. The CORDIC algorithm --  |t F. The symmetric solution set -- a proof of Theorem 5.2.6 --  |t G.A short introduction to INTLAB --  |t Bibliography --  |t Symbol Index --  |t Author Index --  |t Subject Index. 
505 0 |a Preface ; Contents ; 1 Preliminaries ; 1.1 Notations and basic definitions ; 1.2 Metric spaces ; 1.3 Normed linear spaces ; 1.4 Polynomials ; 1.5 Zeros and fixed points of functions ; 1.6 Mean value theorems ; 1.7 Normal forms of matrices ; 1.8 Eigenvalues. 
505 8 |a 5.4 Direct methods 5.5 Iterative methods ; 6 Nonlinear systems of equations ; 6.1 Newton method -- one-dimensional case ; 6.2 Newton method -- multidimensional case ; 6.3 Krawczyk method ; 6.4 Hansen-Sengupta method ; 6.5 Further existence tests ; 6.6 Bisection method. 
505 8 |a 7 Eigenvalue problems 7.1 Quadratic systems ; 7.2 A Krawczyk-like method ; 7.3 Lohner method ; 7.4 Double or nearly double eigenvalues ; 7.5 The generalized eigenvalue problem ; 7.6 A method due to Behnke ; 7.7 Verification of singular values ; 7.8 An inverse eigenvalue problem. 
520 |6 880-02  |a This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through many examples and exercises, and guides the reader from the basics of the theory to current research topics in the mathematics of computation. Contents Preliminaries Real intervals Interval vectors, interval matrices Expressions, P-contraction, [epsilon]-inflation Linear systems of equations Nonlinear systems of equations Eigenvalue problems Automatic differentiation Complex intervals. 
520 |a The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer. 
504 |a Includes bibliographical references (pages 483-498) and indexes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Interval analysis (Mathematics) 
650 4 |a Automatische Differentiation. 
650 4 |a Computerarithmetik. 
650 4 |a Intervalalgebra. 
650 4 |a Intervalanalyse. 
650 4 |a Richrigkeit von Ergebnissen. 
650 6 |a Calcul sur des intervalles. 
650 7 |a MATHEMATICS  |x Numerical Analysis.  |2 bisacsh 
650 7 |a Interval analysis (Mathematics)  |2 fast 
650 7 |a Calcul sur des intervalles.  |2 ram 
653 |a (Produktform)Electronic book text 
653 |a (Zielgruppe)Fachpublikum/ Wissenschaft 
653 |a (BISAC Subject Heading)MAT041000 
653 |a (BISAC Subject Heading)MAT034000: MAT034000 MATHEMATICS / Mathematical Analysis 
653 |a (BISAC Subject Heading)MAT005000: MAT005000 MATHEMATICS / Calculus 
653 |a (BISAC Subject Heading)COM051300: COM051300 COMPUTERS / Programming / Algorithms 
653 |a Computerarithmetik 
653 |a Automatische Differentiation 
653 |a Intervalanalyse 
653 |a Intervalalgebra 
653 |a Richrigkeit von Ergebnissen 
653 |a (VLB-WN)9620 
653 |a (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke 
758 |i has work:  |a Interval analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGwdhpf6C6YPVJgXmvTXQy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |c bundle  |z 9783110499476 
776 0 |c EPUB  |z 9783110498059 
776 0 |c print  |z 9783110500639 
776 0 8 |i Print version:  |a Mayer, G. (Günter).  |t Interval analysis.  |d Berlin : De Gruyter, [2017]  |z 9783110500639  |w (DLC) 2017288658  |w (OCoLC)960277790 
830 0 |a De Gruyter studies in mathematics ;  |v 65. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4843236  |z Texto completo 
880 0 0 |6 505-01/(S  |t Frontmatter --  |t Preface --  |t Contents --  |t 1. Preliminaries --  |t 2. Real intervals --  |t 3. Interval vectors, interval matrices --  |t 4. Expressions, P-contraction, ε-inflation --  |t 5. Linear systems of equations --  |t 6. Nonlinear systems of equations --  |t 7. Eigenvalue problems and related ones --  |t 8. Automatic differentiation --  |t 9. Complex intervals --  |t Final Remarks --  |t Appendix --  |t A. Proof of the Jordan normal form --  |t B. Two elementary proofs of Brouwer's fixed point theorem --  |t C. Proof of the Newton-Kantorovich Theorem --  |t D. Convergence proof of the row cyclic Jacobi method --  |t E. The CORDIC algorithm --  |t F. The symmetric solution set -- a proof of Theorem 5.2.6 --  |t G.A short introduction to INTLAB --  |t Bibliography --  |t Symbol Index --  |t Author Index --  |t Subject Index. 
880 |6 520-02/(S  |a This self-contained text is a step-by-step introduction and a complete overview of interval computation and result verification, a subject whose importance has steadily increased over the past many years. The author, an expert in the field, gently presents the theory of interval analysis through many examples and exercises, and guides the reader from the basics of the theory to current research topics in the mathematics of computation. Contents Preliminaries Real intervals Interval vectors, interval matrices Expressions, P-contraction, ε-inflation Linear systems of equations Nonlinear systems of equations Eigenvalue problems Automatic differentiation Complex intervals. 
938 |a YBP Library Services  |b YANK  |n 13204024 
938 |a YBP Library Services  |b YANK  |n 14247999 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36595120 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4843236 
938 |a De Gruyter  |b DEGR  |n 9783110499469 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35151957 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31854782 
994 |a 92  |b IZTAP