|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn983743895 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
170422s2017 nju o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d LOA
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9783527800711
|
020 |
|
|
|a 3527800719
|
029 |
1 |
|
|a AU@
|b 000065431120
|
035 |
|
|
|a (OCoLC)983743895
|
050 |
|
4 |
|a TK7874.84
|
082 |
0 |
4 |
|a 621.3815
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Puers, Robert.
|
245 |
1 |
0 |
|a Nanoelectronics :
|b Materials, Devices, Applications, 2 Volumes.
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2017.
|
300 |
|
|
|a 1 online resource (691 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Applications of Nanotechnology Ser.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Nanoelectronics: Materials, Devices, Applications -- Series Editor Preface -- About the Series Editor -- Contents -- Foreword -- 1 The Nanoelectronics Industry -- 2 The Nanoelectronics Ecosystem -- 3 Miniaturization -- 4 Functional Diversification -- 5 Embedding Software -- 6 Restructuring the Value Chain -- 6.1 Value Chain Fragmentation -- 6.2 Vertical Integration -- 6.3 Emerging Value Chain -- 7 Opportunities and Perspectives -- 7.1 Emerging Market Opportunities -- Nanoelectronics for Digital Agenda -- Electronics on the EU's Political Agenda -- 1 Digital Action in the European Union -- 2 A Focus on Micro- and Nanoelectronics -- 3 Difficult Times Ahead -- 4 Why the Electronics Sector Matters -- 5 Europe Has a Chance -- 6 Industrial Strategy for Micro- and Nanoelectronics in Europe -- 7 Pooling Resources for Research and Development -- 8 Getting Industry to Act -- 9 State Aid or No State Aid? -- 10 The EU Cannot Give Aid But It Can Help -- 11 What Next? The EU Investment Plan -- Preface -- Part One: Fundamentals on Nanoelectronics -- 1: A Brief History of the Semiconductor Industry -- 1.1 From Microelectronics to Nanoelectronics and Beyond -- 1.1.1 You Got to Have Science, Genius! -- 1.1.2 What Would Science Be Without Technology? -- 1.1.3 The Magic of Economics -- 1.1.4 Back to the MOS -- 1.1.5 Technology Innovation Must Go On! -- 1.1.6 Bipolar against MOS! -- 1.1.7 Finally It All Comes Together -- 1.2 The Growth of the Semiconductor Industry: An Eyewitness Report -- 1.2.1 The Making of the PC Industry -- 1.2.2 The DRAM Wars -- 1.2.3 The Introduction of New Materials -- 1.2.4 Microprocessors Introduction Cycle Goes from 4 to 2 Year -- 1.2.5 The 300 mm Wafer Size Conversion -- 1.2.6 The 1990s: Scaling, Scaling, Scaling -- 1.2.7 Equivalent Scaling: Designers Will Never Know What We Have Done.
|
505 |
8 |
|
|a 1.2.8 Is There Life Beyond the Limits of CMOS and of Von Neumann Architecture? -- 1.2.9 Nanoelectronics to the Rescue -- 1.2.10 The New Manhattan Project -- 1.2.11 System Requirements and Heterogeneous Integration -- 1.2.12 Evolve or Become Irrelevant -- 1.2.13 Bringing It all Together -- Acknowledgments -- 2: More-than-Moore Technologies and Applications -- 2.1 Introduction -- 2.2 ``More Moore ́́and ``More-than-Moore ́́ -- 2.3 From Applications to Technology -- 2.4 More-than-Moore Devices -- 2.4.1 Interacting with the Outside World -- 2.4.2 Powering -- 2.4.3 More-than-Moore Technologies -- 2.5 Application Domains -- 2.5.1 Automotive -- 2.5.2 Health Care -- 2.5.2.1 Wearable Health Care -- 2.5.2.2 Biochips and Lab-on-Chips -- 2.5.3 Safety and Security -- 2.5.4 Industrial Applications -- 2.5.4.1 Integrated Power -- 2.5.4.2 Lighting -- 2.6 Conclusions -- Acknowledgement -- References -- 3: Logic Devices Challenges and Opportunities in the Nano Era -- 3.1 Introduction: Dennard's Scaling and Moore's Law Trends and Limits -- 3.2 Power Performance Trade-Off for 10 nm, 7 nm, and Below -- 3.2.1 Electrostatics of Advanced CMOS Devices -- 3.2.2 Speed Performance Metrics of CMOS Technologies -- 3.2.2.1 Switching Delay Formulation -- 3.2.2.2 Effective Current and MOSFET Electrostatics -- 3.2.3 Parasitics Capacitance in Logic Devices -- 3.2.3.1 Effective Capacitance of an Inverter Switch -- 3.2.3.2 Parasitic Capacitance Calculation Method -- 3.2.4 Power Dissipation in Transistor Devices -- 3.2.4.1 Static Power Dissipation -- 3.2.4.2 Dynamic Power Dissipation -- 3.2.4.3 Limitation of the Minimum Voltage Supply: The Vth Variability -- 3.2.5 Summary of the Key Points of CMOS Devices -- 3.3 Device Structures and Materials in Advanced CMOS Nodes -- 3.3.1 SCE Immune MOSFET Architectures -- 3.3.1.1 Fully Depleted SOI, UTB, and UTBB Structures.
|
505 |
8 |
|
|a 3.3.1.2 FinFET and Double-Gate Devices -- 3.3.1.3 Gate-All-Around Transistors and Nanowires -- 3.3.2 Parasitic Capacitances in Advanced Device Structures -- 3.3.3 High-Mobility Materials and Devices -- 3.3.3.1 Transistor Current in Ultrashort Devices -- 3.3.3.2 Material Engineering for Transport Enhancement -- 3.3.3.3 Choice of Materials for Advanced CMOS -- References -- 4: Memory Technologies -- 4.1 Introduction -- 4.2 Mainstream Memories (DRAM and NAND): Evolution and Scaling Limits -- 4.3 Emerging Memories Technologies -- 4.3.1 Ferroelectric Memories -- 4.3.2 Magnetic Memories -- 4.3.3 Phase Change Memories -- 4.3.4 Resistive RAMs: OxRAM and CBRAM -- 4.3.5 Other Memory Concepts -- 4.4 Emerging Memories Architectures -- 4.4.1 From Cell to Arrays -- 4.4.2 3D RRAM Architectures -- 4.5 Opportunities for Emerging Memories -- 4.5.1 Storage Class Memory -- 4.5.2 Embedded Memories -- 4.6 Conclusions -- References -- Part Two: Devices in the Nano Era -- 5: Beyond-CMOS Low-Power Devices: Steep-Slope Switches for Computation and Sensing -- 5.1 Digital Computing in Post-Dennard Nanoelectronics Era -- 5.2 Beyond CMOS Steep-Slope Switches -- 5.3 Convergence of Requirements for Energy-Efficient Computing and Sensing Technologies: Enabling Smart Autonomous Systems for IoE -- 5.4 Conclusions and Perspectives -- References -- 6: RF CMOS -- 6.1 Introduction -- 6.2 Toward 5G and Beyond -- 6.3 CMOS @ Millimeter-Wave: Challenges and Opportunities -- 6.4 Terahertz in CMOS -- 6.5 Conclusions -- References -- 7: Smart Power Devices Nanotechnology -- 7.1 Introduction -- 7.2 Si Power Devices -- 7.2.1 Discrete versus Integrated Power Devices -- 7.2.2 Low-Voltage MOSFETs -- 7.2.3 High-Voltage MOSFETs -- 7.2.4 IGBTs -- 7.2.5 Device versus Application Landscape -- 7.3 SiC Power Semiconductor Devices -- 7.3.1 High-Voltage Blocking -- 7.3.2 SiC Diodes/Rectifiers.
|
505 |
8 |
|
|a 7.3.3 Switch Devices -- 7.3.4 JFETs and MOSFETs -- 7.3.5 Bipolar Junction Transistors -- 7.3.6 Ultrahigh Voltage-High-Injection Devices -- 7.3.7 Concluding Remarks and Issues of Concerns for SiC Power Devices -- 7.4 Power GaN Device Technology -- 7.4.1 GaN Material and Device Physics -- 7.4.2 Device Architectures -- 7.4.2.1 HEMT (Schottky) -- 7.4.2.2 MISHEMT -- 7.4.2.3 Vertical Devices -- 7.4.3 Ohmic Contacts -- 7.4.4 E-MODE Devices -- 7.4.4.1 Thin AlGaN Gate Barrier -- 7.4.4.2 Charge Incorporation -- 7.4.4.3 P-GaN or P-AlGaN Gate Structure -- 7.4.4.4 HEMT/FET Hybrid -- 7.4.4.5 Cascode -- 7.4.5 Breakdown Voltage Engineering and Limitations -- 7.4.5.1 Buffer Engineering -- 7.4.5.2 Substrate Implantation -- 7.4.5.3 Substrate Removal -- 7.4.6 Dispersion Phenomena -- 7.4.6.1 Surface-Induced Dispersion -- 7.4.6.2 Buffer-Induced Dispersion -- 7.4.7 Conclusion -- 7.5 New Materials and Substrates for WBG Power Devices -- References -- 8: Integrated Sensors and Actuators: Their Nano-Enabled Evolution into the Twenty-First Century -- 8.1 Introduction -- 8.2 Sensors -- 8.2.1 Mechanical Sensors -- 8.2.1.1 Pressure Sensors and Microphones -- 8.2.1.2 Gyroscopes and Accelerometers -- 8.2.1.3 Resonators -- 8.2.2 Vision/IR -- 8.2.3 Terahertz (Thz) Imaging -- 8.2.4 Radar/Lidar -- 8.2.5 Gas Sensors -- 8.2.6 Biosensors -- 8.3 Actuators -- 8.3.1 Electrostatic, Electromagnetic, and Piezoelectric -- 8.3.2 Pneumatic, Phase Change, and Thermal Actuators -- 8.3.3 Artificial Muscles -- 8.4 Molecular Motors -- 8.5 Transducer Integration and Connectivity -- 8.6 Conclusion -- References -- Part Three: Advanced Materials and Materials Combinations -- 9: Silicon Wafers as a Foundation for Growth -- 9.1 Introduction -- 9.2 Si Availability and Technologies to Produce Hyperpure Silicon in Large Quantities -- 9.2.1 Metallurgical Silicon Production.
|
505 |
8 |
|
|a 9.2.2 Purification of Metallurgical Silicon via Trichlorosilane -- 9.2.3 Production of Electronic Grade Polysilicon -- 9.2.4 Monocrystalline Silicon Production -- 9.2.4.1 CZ Growth Method -- 9.2.4.2 FZ Growth Method -- 9.2.5 Process Sequence of Silicon Wafer Production -- 9.2.5.1 Mechanical Treatment -- 9.2.5.2 Chemical Treatment -- 9.2.5.3 Chemical-Mechanical Polishing -- 9.2.5.4 Final Cleaning and Packaging -- 9.2.5.5 Epitaxy -- 9.3 The Exceptional Physical and Technological Properties of Monocrystalline Silicon for Device Manufacturing -- 9.3.1 Doping -- 9.3.2 Crystal Structure -- 9.3.3 Silicon Dioxide -- 9.3.4 Intrinsic Defect Categories -- 9.3.5 Defect Kinetic Behavior -- 9.4 Silicon and New Materials -- 9.5 Example of Actual Advanced 300 mm Wafer Specification for Key Parameters -- Acknowledgments -- References -- 10: Nanoanalysis -- 10.1 Three-Dimensional Analysis -- 10.1.1 X-Ray Tomography for the Analysis of TSV -- 10.1.2 Progress in Atom Probe Tomography for Semiconductor Analysis -- 10.2 Strain Analysis -- 10.2.1 State-of-the-Art Strain Analysis by Precession Electron Diffraction -- 10.2.2 X-Ray for Strain Measurements -- 10.3 Compositional and Chemical Analysis -- 10.3.1 Advanced Characterization of HKMG Stacks for Sub-14 nm Technology Nodes -- 10.3.2 TEM Composition Analysis of NMOS Device -- 10.4 Conclusions -- Glossary -- Acknowledgments -- References -- Part Four: Semiconductor Smart Manufacturing -- 11. Front-End Processes -- 11.1 A Standard MOS FEOL Process Flow -- 11.2 Cleaning -- 11.2.1 Wet Cleaning -- 11.2.2 Advanced Aqueous Cleaning -- 11.2.3 Nonaqueous Advanced Cleaning Approaches -- 11.2.4 Advanced Drying Techniques -- 11.3 Silicon Oxidation -- 11.4 Doping and Dopant Activation -- 11.4.1 Coimplantation -- 11.4.2 Defect Engineering and Surface Treatment.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Nanoelectronics.
|
650 |
|
6 |
|a Nanoélectronique.
|
650 |
|
7 |
|a Nanoelectronics
|2 fast
|
700 |
1 |
|
|a Baldi, Livio.
|
700 |
1 |
|
|a Van de Voorde, Marcel.
|
700 |
1 |
|
|a Van Nooten, Sebastiaan E.
|
758 |
|
|
|i has work:
|a Nanoelectronics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGj9JtKDpfd6wy7QJ6WfYP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Puers, Robert.
|t Nanoelectronics : Materials, Devices, Applications, 2 Volumes.
|d Newark : John Wiley & Sons, Incorporated, ©2017
|z 9783527340538
|
830 |
|
0 |
|a Applications of Nanotechnology Ser.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4841871
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4841871
|
994 |
|
|
|a 92
|b IZTAP
|