|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn983734168 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
170422s2017 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d IDB
|d OCLCQ
|d MERUC
|d OCLCQ
|d LVT
|d OCLCQ
|d UEJ
|d OCLCO
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781119136415
|
020 |
|
|
|a 1119136415
|
029 |
1 |
|
|a AU@
|b 000065431119
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999932873505765
|
035 |
|
|
|a (OCoLC)983734168
|
050 |
|
4 |
|a QA402.5
|b .P87 2017eb
|
082 |
0 |
4 |
|a 519.7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Petrowski, Alain.
|
245 |
1 |
0 |
|a Evolutionary Algorithms :
|b an Overview.
|
260 |
|
|
|a Somerset :
|b John Wiley & Sons, Incorporated,
|c 2017.
|
300 |
|
|
|a 1 online resource (261 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Title Page; Copyright; Contents; Preface; 1. Evolutionary Algorithms; 1.1. From natural evolution to engineering; 1.2. A generic evolutionary algorithm; 1.3. Selection operators; 1.3.1. Selection pressure; 1.3.2. Genetic drift; 1.3.3. Proportional selection; 1.3.4. Tournament selection; 1.3.5. Truncation selection; 1.3.6. Environmental selection; 1.3.7. Selection operators: conclusion; 1.4. Variation operators and representation; 1.4.1. Generalities about the variation operators; 1.4.2. Crossover; 1.4.3. Mutation; 1.5. Binary representation; 1.5.1. Crossover; 1.5.2. Mutation.
|
505 |
8 |
|
|a 1.6. The simple genetic algorithm1.7. Conclusion; 2. Continuous Optimization; 2.1. Introduction; 2.2. Real representation and variation operators for evolutionary algorithms; 2.2.1. Crossover; 2.2.2. Mutation; 2.3. Covariance Matrix Adaptation Evolution Strategy; 2.3.1. Method presentation; 2.3.2. The CMA-ES algorithm; 2.4. A restart CMA Evolution Strategy; 2.5. Differential Evolution (DE); 2.5.1. Initializing the population; 2.5.2. The mutation operator; 2.5.3. The crossover operator; 2.5.4. The selection operator; 2.6. Success-History based Adaptive Differential Evolution (SHADE).
|
505 |
8 |
|
|a 2.6.1. The algorithm2.6.2. Current-to-pbest/1 mutation; 2.6.3. The success history; 2.7. Particle Swarm Optimization; 2.7.1. Standard Particle Swarm Algorithm 2007; 2.7.2. The parameters; 2.7.3. Neighborhoods; 2.7.4. Swarm initialization; 2.8. Experiments and performance comparisons; 2.8.1. Experiments; 2.8.2. Results; 2.8.3. Discussion; 2.9. Conclusion; 2.10. Appendix: set of basic objective functions used for the experiments; 3. Constrained Continuous Evolutionary Optimization; 3.1. Introduction; 3.1.1. The problem with Constrained Evolutionary Optimization; 3.1.2. Taxonomy.
|
505 |
8 |
|
|a 3.2. Penalization3.2.1. Static penalties; 3.2.2. Dynamic penalties; 3.2.3. Adaptive penalties; 3.2.4. Self-adaptive penalties; 3.2.5. Stochastic ranking; 3.3. Superiority of feasible solutions; 3.3.1. Special penalization; 3.3.2. Feasibility rules; 3.4. Evolving on the feasible region; 3.4.1. Searching for feasible solutions; 3.4.2. Maintaining feasibility using special operators; 3.5. Multi-objective methods; 3.5.1. Bi-objective techniques; 3.5.2. Multi-objective techniques; 3.6. Parallel population approaches; 3.7. Hybrid methods; 3.8. Conclusion; 4. Combinatorial Optimization.
|
505 |
8 |
|
|a 4.1. Introduction4.1.1. Solution encoding; 4.1.2. The knapsack problem (KP); 4.1.3. The Traveling Salesman Problem (TSP); 4.2. The binary representation and variation operators; 4.2.1. Binary representation for the 0/1-KP; 4.2.2. Binary representation for the TSP; 4.3. Order-based Representation and variation operators; 4.3.1. Crossover operators; 4.3.2. Mutation operators; 4.3.3. Specific operators; 4.3.4. Discussion; 4.4. Conclusion; 5. Multi-objective Optimization; 5.1. Introduction; 5.2. Problem formalization; 5.2.1. Pareto dominance; 5.2.2. Pareto optimum.
|
500 |
|
|
|a 5.2.3. Multi-objective optimization algorithms.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Genetic algorithms.
|
650 |
|
6 |
|a Algorithmes génétiques.
|
650 |
|
7 |
|a Genetic algorithms
|2 fast
|
700 |
1 |
|
|a Ben-Hamida, Sana.
|
700 |
1 |
|
|a Michalewicz, Zbigniew.
|
758 |
|
|
|i has work:
|a Evolutionary algorithms (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGgk8VpMgPRjvBQ9QmJPw3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Petrowski, Alain.
|t Evolutionary Algorithms : An Overview.
|d Somerset : John Wiley & Sons, Incorporated, ©2017
|z 9781848218048
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4841876
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4841876
|
994 |
|
|
|a 92
|b IZTAP
|