Cargando…

Evolutionary Algorithms : an Overview.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Petrowski, Alain
Otros Autores: Ben-Hamida, Sana, Michalewicz, Zbigniew
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Somerset : John Wiley & Sons, Incorporated, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn983734168
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170422s2017 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDB  |d OCLCQ  |d MERUC  |d OCLCQ  |d LVT  |d OCLCQ  |d UEJ  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119136415 
020 |a 1119136415 
029 1 |a AU@  |b 000065431119 
029 1 |a DKDLA  |b 820120-katalog:999932873505765 
035 |a (OCoLC)983734168 
050 4 |a QA402.5  |b .P87 2017eb 
082 0 4 |a 519.7  |2 23 
049 |a UAMI 
100 1 |a Petrowski, Alain. 
245 1 0 |a Evolutionary Algorithms :  |b an Overview. 
260 |a Somerset :  |b John Wiley & Sons, Incorporated,  |c 2017. 
300 |a 1 online resource (261 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; 1. Evolutionary Algorithms; 1.1. From natural evolution to engineering; 1.2. A generic evolutionary algorithm; 1.3. Selection operators; 1.3.1. Selection pressure; 1.3.2. Genetic drift; 1.3.3. Proportional selection; 1.3.4. Tournament selection; 1.3.5. Truncation selection; 1.3.6. Environmental selection; 1.3.7. Selection operators: conclusion; 1.4. Variation operators and representation; 1.4.1. Generalities about the variation operators; 1.4.2. Crossover; 1.4.3. Mutation; 1.5. Binary representation; 1.5.1. Crossover; 1.5.2. Mutation. 
505 8 |a 1.6. The simple genetic algorithm1.7. Conclusion; 2. Continuous Optimization; 2.1. Introduction; 2.2. Real representation and variation operators for evolutionary algorithms; 2.2.1. Crossover; 2.2.2. Mutation; 2.3. Covariance Matrix Adaptation Evolution Strategy; 2.3.1. Method presentation; 2.3.2. The CMA-ES algorithm; 2.4. A restart CMA Evolution Strategy; 2.5. Differential Evolution (DE); 2.5.1. Initializing the population; 2.5.2. The mutation operator; 2.5.3. The crossover operator; 2.5.4. The selection operator; 2.6. Success-History based Adaptive Differential Evolution (SHADE). 
505 8 |a 2.6.1. The algorithm2.6.2. Current-to-pbest/1 mutation; 2.6.3. The success history; 2.7. Particle Swarm Optimization; 2.7.1. Standard Particle Swarm Algorithm 2007; 2.7.2. The parameters; 2.7.3. Neighborhoods; 2.7.4. Swarm initialization; 2.8. Experiments and performance comparisons; 2.8.1. Experiments; 2.8.2. Results; 2.8.3. Discussion; 2.9. Conclusion; 2.10. Appendix: set of basic objective functions used for the experiments; 3. Constrained Continuous Evolutionary Optimization; 3.1. Introduction; 3.1.1. The problem with Constrained Evolutionary Optimization; 3.1.2. Taxonomy. 
505 8 |a 3.2. Penalization3.2.1. Static penalties; 3.2.2. Dynamic penalties; 3.2.3. Adaptive penalties; 3.2.4. Self-adaptive penalties; 3.2.5. Stochastic ranking; 3.3. Superiority of feasible solutions; 3.3.1. Special penalization; 3.3.2. Feasibility rules; 3.4. Evolving on the feasible region; 3.4.1. Searching for feasible solutions; 3.4.2. Maintaining feasibility using special operators; 3.5. Multi-objective methods; 3.5.1. Bi-objective techniques; 3.5.2. Multi-objective techniques; 3.6. Parallel population approaches; 3.7. Hybrid methods; 3.8. Conclusion; 4. Combinatorial Optimization. 
505 8 |a 4.1. Introduction4.1.1. Solution encoding; 4.1.2. The knapsack problem (KP); 4.1.3. The Traveling Salesman Problem (TSP); 4.2. The binary representation and variation operators; 4.2.1. Binary representation for the 0/1-KP; 4.2.2. Binary representation for the TSP; 4.3. Order-based Representation and variation operators; 4.3.1. Crossover operators; 4.3.2. Mutation operators; 4.3.3. Specific operators; 4.3.4. Discussion; 4.4. Conclusion; 5. Multi-objective Optimization; 5.1. Introduction; 5.2. Problem formalization; 5.2.1. Pareto dominance; 5.2.2. Pareto optimum. 
500 |a 5.2.3. Multi-objective optimization algorithms. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Genetic algorithms. 
650 6 |a Algorithmes génétiques. 
650 7 |a Genetic algorithms  |2 fast 
700 1 |a Ben-Hamida, Sana. 
700 1 |a Michalewicz, Zbigniew. 
758 |i has work:  |a Evolutionary algorithms (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGgk8VpMgPRjvBQ9QmJPw3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Petrowski, Alain.  |t Evolutionary Algorithms : An Overview.  |d Somerset : John Wiley & Sons, Incorporated, ©2017  |z 9781848218048 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4841876  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4841876 
994 |a 92  |b IZTAP