|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn982297192 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
170413t20172017riua ob 000 0 eng d |
010 |
|
|
|a 2017010052
|
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d LLB
|d UIU
|d OCLCA
|d COD
|d YDX
|d EBLCP
|d COO
|d IDB
|d N$T
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d OCLCQ
|
019 |
|
|
|a 1262670670
|
020 |
|
|
|a 9781470437077
|q (electronic bk.)
|
020 |
|
|
|a 1470437074
|q (electronic bk.)
|
020 |
|
|
|z 9781470423230
|q (alk. paper)
|
020 |
|
|
|z 1470423235
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062339109
|
029 |
1 |
|
|a AU@
|b 000069670094
|
035 |
|
|
|a (OCoLC)982297192
|z (OCoLC)1262670670
|
050 |
|
4 |
|a QC174.17.S3
|b F44 2017
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.3533
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Fefferman, Charles,
|d 1949-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJth33tYPcPpC7RRCYvJXd
|
245 |
1 |
0 |
|a Topologically protected states in one-dimensional systems /
|c C.L. Fefferman, J.P. Lee-Thorp, M.I. Weinstein.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2017.
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (vii, 118 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 247, number 1173
|
500 |
|
|
|a "Volume 247, number 1173 (sixth of 7 numbers), May 2017."
|
500 |
|
|
|a Schrödinger equation, Dirac equation, Floquet-Bloch theory, topological protection, edge states, Hill's equation, domain wall.
|
520 |
3 |
|
|a We study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "mDirac points". We then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. Our model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states we construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.
|
504 |
|
|
|a Includes bibliographical references (pages 117-118).
|
505 |
0 |
0 |
|g Chapter 1.
|t Introduction and Outline
|g Chapter 2.
|t Floquet-Bloch and Fourier Analysis
|g Chapter 3.
|t Dirac Points of 1D Periodic Structures
|g Chapter 4.
|t Domain Wall Modulated Periodic Hamiltonian and Formal Derivation of Topologically Protected Bound States
|g Chapter 5.
|t Main Theorem -- Bifurcation of Topologically Protected States
|g Chapter 6.
|t Proof of the Main Theorem
|g Appendix A.
|t A Variant of Poisson Summation
|g Appendix B.
|t 1D Dirac points and Floquet-Bloch Eigenfunctions
|g Appendix C.
|t Dirac Points for Small Amplitude Potentials
|g Appendix D.
|t Genericity of Dirac Points -- 1D and 2D cases
|g Appendix E.
|t Degeneracy Lifting at Quasi-momentum Zero
|g Appendix F.
|t Gap Opening Due to Breaking of Inversion Symmetry
|g Appendix G.
|t Bounds on Leading Order Terms in Multiple Scale Expansion
|g Appendix H.
|t Derivation of Key Bounds and Limiting Relations in the Lyapunov-Schmidt Reduction.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Quantum theory.
|
650 |
|
0 |
|a Schrödinger operator.
|
650 |
|
0 |
|a Topology.
|
650 |
|
0 |
|a Dirac equation.
|
650 |
|
6 |
|a Théorie quantique.
|
650 |
|
6 |
|a Opérateur de Schrödinger.
|
650 |
|
6 |
|a Topologie.
|
650 |
|
6 |
|a Équation de Dirac.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Dirac equation
|2 fast
|
650 |
|
7 |
|a Quantum theory
|2 fast
|
650 |
|
7 |
|a Schrödinger operator
|2 fast
|
650 |
|
7 |
|a Topology
|2 fast
|
700 |
1 |
|
|a Lee-Thorp, J. P.
|q (James P.),
|d 1987-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjy83Vj8f8bRByX3brJXcX
|
700 |
1 |
|
|a Weinstein, Michael I.,
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Topologically protected states in one-dimensional systems (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGmJgVGRW8qKrfRGMKbG9C
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Fefferman, Charles, 1949-
|t Topologically protected states in one-dimensional systems
|z 9781470423230
|w (DLC) 2017010052
|w (OCoLC)972427493
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1173.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908295
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37445077
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4908295
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1550143
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14683168
|
994 |
|
|
|a 92
|b IZTAP
|