Cargando…

Topologically protected states in one-dimensional systems /

We study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "mDirac points". We then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fefferman, Charles, 1949- (Autor), Lee-Thorp, J. P. (James P.), 1987- (Autor), Weinstein, Michael I. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1173.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn982297192
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 170413t20172017riua ob 000 0 eng d
010 |a  2017010052 
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d LLB  |d UIU  |d OCLCA  |d COD  |d YDX  |d EBLCP  |d COO  |d IDB  |d N$T  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 1262670670 
020 |a 9781470437077  |q (electronic bk.) 
020 |a 1470437074  |q (electronic bk.) 
020 |z 9781470423230  |q (alk. paper) 
020 |z 1470423235  |q (alk. paper) 
029 1 |a AU@  |b 000062339109 
029 1 |a AU@  |b 000069670094 
035 |a (OCoLC)982297192  |z (OCoLC)1262670670 
050 4 |a QC174.17.S3  |b F44 2017 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515/.3533  |2 23 
049 |a UAMI 
100 1 |a Fefferman, Charles,  |d 1949-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJth33tYPcPpC7RRCYvJXd 
245 1 0 |a Topologically protected states in one-dimensional systems /  |c C.L. Fefferman, J.P. Lee-Thorp, M.I. Weinstein. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource (vii, 118 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 247, number 1173 
500 |a "Volume 247, number 1173 (sixth of 7 numbers), May 2017." 
500 |a Schrödinger equation, Dirac equation, Floquet-Bloch theory, topological protection, edge states, Hill's equation, domain wall. 
520 3 |a We study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "mDirac points". We then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. Our model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states we construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect. 
504 |a Includes bibliographical references (pages 117-118). 
505 0 0 |g Chapter 1.  |t Introduction and Outline  |g Chapter 2.  |t Floquet-Bloch and Fourier Analysis  |g Chapter 3.  |t Dirac Points of 1D Periodic Structures  |g Chapter 4.  |t Domain Wall Modulated Periodic Hamiltonian and Formal Derivation of Topologically Protected Bound States  |g Chapter 5.  |t Main Theorem -- Bifurcation of Topologically Protected States  |g Chapter 6.  |t Proof of the Main Theorem  |g Appendix A.  |t A Variant of Poisson Summation  |g Appendix B.  |t 1D Dirac points and Floquet-Bloch Eigenfunctions  |g Appendix C.  |t Dirac Points for Small Amplitude Potentials  |g Appendix D.  |t Genericity of Dirac Points -- 1D and 2D cases  |g Appendix E.  |t Degeneracy Lifting at Quasi-momentum Zero  |g Appendix F.  |t Gap Opening Due to Breaking of Inversion Symmetry  |g Appendix G.  |t Bounds on Leading Order Terms in Multiple Scale Expansion  |g Appendix H.  |t Derivation of Key Bounds and Limiting Relations in the Lyapunov-Schmidt Reduction. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Quantum theory. 
650 0 |a Schrödinger operator. 
650 0 |a Topology. 
650 0 |a Dirac equation. 
650 6 |a Théorie quantique. 
650 6 |a Opérateur de Schrödinger. 
650 6 |a Topologie. 
650 6 |a Équation de Dirac. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Dirac equation  |2 fast 
650 7 |a Quantum theory  |2 fast 
650 7 |a Schrödinger operator  |2 fast 
650 7 |a Topology  |2 fast 
700 1 |a Lee-Thorp, J. P.  |q (James P.),  |d 1987-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjy83Vj8f8bRByX3brJXcX 
700 1 |a Weinstein, Michael I.,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Topologically protected states in one-dimensional systems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGmJgVGRW8qKrfRGMKbG9C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Fefferman, Charles, 1949-  |t Topologically protected states in one-dimensional systems  |z 9781470423230  |w (DLC) 2017010052  |w (OCoLC)972427493 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1173. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908295  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445077 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4908295 
938 |a EBSCOhost  |b EBSC  |n 1550143 
938 |a YBP Library Services  |b YANK  |n 14683168 
994 |a 92  |b IZTAP