Cargando…

Topologically protected states in one-dimensional systems /

We study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "mDirac points". We then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Fefferman, Charles, 1949- (Autor), Lee-Thorp, J. P. (James P.), 1987- (Autor), Weinstein, Michael I. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1173.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:We study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "mDirac points". We then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. Our model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states we construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.
Notas:"Volume 247, number 1173 (sixth of 7 numbers), May 2017."
Schrödinger equation, Dirac equation, Floquet-Bloch theory, topological protection, edge states, Hill's equation, domain wall.
Descripción Física:1 online resource (vii, 118 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 117-118).
ISBN:9781470437077
1470437074
ISSN:0065-9266 ;