Cargando…

Quantum cluster algebras structures on quantum nilpotent algebras /

All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Goodearl, K. R. (Autor), Yakimov, Milen, 1973- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1169.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn982296190
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 170413t20172016riu ob 001 0 eng d
010 |a  2017010083 
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d LLB  |d UIU  |d OCLCA  |d COD  |d EBLCP  |d IDB  |d COO  |d OCLCQ  |d YDX  |d LEAUB  |d OCLCQ  |d UKAHL  |d LOA  |d OCLCO  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 993773543  |a 1004379614  |a 1262670989 
020 |a 9781470436995  |q (online) 
020 |a 147043699X  |q (online) 
020 |z 9781470436940  |q (alk. paper) 
020 |z 1470436949  |q (alk. paper) 
029 1 |a AU@  |b 000062339083 
035 |a (OCoLC)982296190  |z (OCoLC)993773543  |z (OCoLC)1004379614  |z (OCoLC)1262670989 
050 4 |a QA251.3  |b .G66 2017 
082 0 4 |a 512/.55  |2 23 
049 |a UAMI 
100 1 |a Goodearl, K. R.,  |e author. 
245 1 0 |a Quantum cluster algebras structures on quantum nilpotent algebras /  |c K.R. Goodearl, M.T. Yakimov. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2016 
300 |a 1 online resource (vii, 119 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 247, number 1169 
500 |a "Volume 247, number 1169 (second of 7 numbers), May 2017." 
500 |a Keywords: Quantum cluster algebras, quantum nilpotent algebras, iterated Ore extensions, noncommutative unique factorization domains. 
504 |a Includes bibliographical references (pages 115-116) and index. 
520 3 |a All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts. The proofs rely on Chatters' notion of noncommutative unique factorization domains. Toric frames are constructed by considering sequences of homogeneous prime elements of chains of noncommutative UFDs (a generalization of the construction of Gelfand-Tsetlin subalgebras) and mutations are obtained by altering chains of noncommutative UFDs. Along the way, an intricate (and unified) combinatorial model for the homogeneous prime elements in chains of noncommutative UFDs and their alterations is developed. When applied to special families, this recovers the combinatorics of Weyl groups and double Weyl groups previously used in the construction and categorification of cluster algebras. It is expected that this combinatorial model of sequences of homogeneous prime elements will have applications to the unified categorification of quantum nilpotent algebras. 
505 0 0 |g Chapter 1.  |t Introduction  |g Chapter 2.  |t Quantum cluster algebras  |g Chapter 3.  |t Iterated skew polynomial algebras and noncommutative UFDs  |g Chapter 4.  |t One-step mutations in CGL extensions  |g Chapter 5.  |t Homogeneous prime elements for subalgebras of symmetric CGL extensions  |g Chapter 6.  |t Chains of mutations in symmetric CGL extensions  |g Chapter 7.  |t Division properties of mutations between CGL extension presentations  |g Chapter 8.  |t Symmetric CGL extensions and quantum cluster algebras  |g Chapter 9.  |t Quantum groups and quantum Schubert cell algebras  |g Chapter 10.  |t Quantum cluster algebra structures on quantum Schubert cell algebras. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Quantum groups. 
650 0 |a Algebra. 
650 6 |a Groupes quantiques. 
650 6 |a Algèbre. 
650 7 |a algebra.  |2 aat 
650 7 |a Algebra  |2 fast 
650 7 |a Quantum groups  |2 fast 
700 1 |a Yakimov, Milen,  |d 1973-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjvYrft9PP4wDbDqwkr76q 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Quantum cluster algebras structures on quantum nilpotent algebras (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFTk73wG3Jj7GfhXryQqjP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Goodearl, K.R.  |t Quantum cluster algebras structures on quantum nilpotent algebras  |z 9781470436940  |w (DLC) 2017010083  |w (OCoLC)972437400 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1169. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908291  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445073 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4908291 
938 |a YBP Library Services  |b YANK  |n 14683164 
994 |a 92  |b IZTAP