Cargando…

Stability of Line Solitons for the KP-II Equation in R 2

The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as x\to\infty. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the lo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mizumachi, Tetsu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 2015.
Colección:Memoirs of the American Mathematical Society.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn982011889
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170408s2015 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d S9M  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1162278749  |a 1290075577 
020 |a 9781470426132 
020 |a 1470426137 
029 1 |a AU@  |b 000069467023 
035 |a (OCoLC)982011889  |z (OCoLC)1162278749  |z (OCoLC)1290075577 
050 4 |a QC174.26.W28M59 2015 
082 0 4 |a 530.124 
049 |a UAMI 
100 1 |a Mizumachi, Tetsu. 
245 1 0 |a Stability of Line Solitons for the KP-II Equation in R 2 
260 |a Providence :  |b American Mathematical Society,  |c 2015. 
300 |a 1 online resource (110 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v v. 238 
588 0 |a Print version record. 
520 |a The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as x\to\infty. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward y=\pm\infty. The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms. 
504 |a Includes bibliographical references. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Solitons. 
650 0 |a Wave-motion, Theory of. 
650 0 |a Symmetry (Mathematics) 
650 0 |a Representations of algebras. 
650 4 |a Solitons. 
650 6 |a Solitons. 
650 6 |a Théorie du mouvement ondulatoire. 
650 6 |a Symétrie (Mathématiques) 
650 6 |a Représentations des algèbres. 
650 7 |a Representations of algebras  |2 fast 
650 7 |a Solitons  |2 fast 
650 7 |a Symmetry (Mathematics)  |2 fast 
650 7 |a Wave-motion, Theory of  |2 fast 
758 |i has work:  |a Stability of line solitons for the KP equation in R2 (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFWwXPDYCyrhPHVjvWprRq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Mizumachi, Tetsu.  |t Stability of Line Solitons for the KP-II Equation in R 2.  |d Providence : American Mathematical Society, ©2015  |z 9781470414245 
830 0 |a Memoirs of the American Mathematical Society. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4832035  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4832035 
994 |a 92  |b IZTAP