|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn979159433 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
170325s2017 nju ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OCLCQ
|d DEBBG
|d CUY
|d ZCU
|d MERUC
|d ICG
|d OCLCF
|d DKC
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 978502988
|a 978861005
|a 978866596
|a 979109532
|a 979319285
|a 979686076
|a 979811387
|a 980094899
|a 980174905
|a 980471182
|a 980559760
|a 980727454
|
020 |
|
|
|a 9781119377412
|
020 |
|
|
|a 1119377412
|
020 |
|
|
|a 9781119377399
|
020 |
|
|
|a 1119377390
|
020 |
|
|
|z 1119377382
|
020 |
|
|
|z 9781119377382
|
035 |
|
|
|a (OCoLC)979159433
|z (OCoLC)978502988
|z (OCoLC)978861005
|z (OCoLC)978866596
|z (OCoLC)979109532
|z (OCoLC)979319285
|z (OCoLC)979686076
|z (OCoLC)979811387
|z (OCoLC)980094899
|z (OCoLC)980174905
|z (OCoLC)980471182
|z (OCoLC)980559760
|z (OCoLC)980727454
|
050 |
|
4 |
|a QA274.23
|b .P365 2017
|
082 |
0 |
4 |
|a 519.22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Panik, Michael J.
|
245 |
1 |
0 |
|a Stochastic Growth Equations :
|b Mathematics and Modeling.
|
260 |
|
|
|a Newark :
|b John Wiley & Sons, Incorporated,
|c 2017.
|
300 |
|
|
|a 1 online resource (306 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
8 |
|
|6 880-01
|a 1.10 Set and Measure Functions1.10.1 Set Functions; 1.10.2 Measure Functions; 1.10.3 Outer Measure Functions; 1.10.4 Complete Measure Functions; 1.10.5 Lebesgue Measure; 1.10.6 Measurable Functions; 1.10.7 Lebesgue Measurable Functions; 1.11 Normed Linear Spaces; 1.11.1 Space of Bounded Real-Valued Functions; 1.11.2 Space of Bounded Continuous Real-Valued Functions; 1.11.3 Some Classical Banach Spaces; 1.12 Integration; 1.12.1 Integral of a Non-negative Simple Function; 1.12.2 Integral of a Non-negative Measurable Function Using Simple Functions; 1.12.3 Integral of a Measurable Function.
|
505 |
8 |
|
|a 1.12.4 Integral of a Measurable Function on a Measurable Set1.12.5 Convergence of Sequences of Functions; Chapter 2 Mathematical Foundations 2: Probability, Random Variables, and Convergence of Random Variables; 2.1 Probability Spaces; 2.2 Probability Distributions; 2.3 The Expectation of a Random Variable; 2.3.1 Theoretical Underpinnings; 2.3.2 Computational Considerations; 2.4 Moments of a Random Variable; 2.5 Multiple Random Variables; 2.5.1 The Discrete Case; 2.5.2 The Continuous Case; 2.5.3 Expectations and Moments; 2.5.4 The Multivariate Discrete and Continuous Cases.
|
505 |
8 |
|
|a 2.6 Convergence of Sequences of Random Variables2.6.1 Almost Sure Convergence; 2.6.2 Convergence in Lp, p>0; 2.6.3 Convergence in Probability; 2.6.4 Convergence in Distribution; 2.6.5 Convergence of Expectations; 2.6.6 Convergence of Sequences of Events; 2.6.7 Applications of Convergence of Random Variables; 2.7 A Couple of Important Inequalities; Appendix 2.A The Conditional Expectation E(X|Y); Chapter 3 Mathematical Foundations 3: Stochastic Processes, Martingales, and Brownian Motion; 3.1 Stochastic Processes; 3.1.1 Finite-Dimensional Distributions of a Stochastic Process.
|
505 |
8 |
|
|a 3.1.2 Selected Characteristics of Stochastic Processes3.1.3 Filtrations of A; 3.2 Martingales; 3.2.1 Discrete-Time Martingales; 3.2.1.1 Discrete-Time Martingale Convergence; 3.2.2 Continuous-Time Martingales; 3.2.2.1 Continuous-Time Martingale Convergence; 3.2.3 Martingale Inequalities; 3.3 Path Regularity of Stochastic Processes; 3.4 Symmetric Random Walk; 3.5 Brownian Motion; 3.5.1 Standard Brownian Motion; 3.5.2 BM as a Markov Process; 3.5.3 Constructing BM; 3.5.3.1 BM Constructed from N(0, 1) Random Variables; 3.5.3.2 BM as the Limit of Symmetric Random Walks; 3.5.4 White Noise Process.
|
500 |
|
|
|a Appendix 3.A Kolmogorov Existence Theorem: Another Look.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Stochastic differential equations.
|
650 |
|
6 |
|a Équations différentielles stochastiques.
|
650 |
|
7 |
|a Stochastic differential equations
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Panik, Michael J.
|t Stochastic Growth Equations : Mathematics and Modeling.
|d Newark : John Wiley & Sons, Incorporated, ©2017
|z 9781119377382
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4825791
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a Title Page ; Copyright Page ; Contents; Dedication ; Preface; Symbols and Abbreviations; Chapter 1 Mathematical Foundations 1: Point-Set Concepts, Set and Measure Functions, Normed Linear Spaces, and Integration; 1.1 Set Notation and Operations; 1.1.1 Sets and Set Inclusion; 1.1.2 Set Algebra; 1.2 Single-Valued Functions; 1.3 Real and Extended Real Numbers; 1.4 Metric Spaces; 1.5 Limits of Sequences; 1.6 Point-Set Theory; 1.7 Continuous Functions; 1.8 Operations on Sequences of Sets; 1.9 Classes of Subsets of Omega; 1.9.1 Topological Space; 1.9.2 σ-Algebra of Sets and the Borel σ-Algebra.
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4825791
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13779099
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13820235
|
994 |
|
|
|a 92
|b IZTAP
|