Cargando…

Surface Plasmon Enhanced, Coupled and Controlled Fluorescence.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Geddes, Chris D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : John Wiley & Sons, Incorporated, 2015.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Title Page; Copyright Page; Contents; List of Contributors; Preface; Chapter 1 Plasmonic-Fluorescent and Magnetic-Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe ; 1.1 Introduction; 1.2 Synthesis Design of Composite Nanoparticle; 1.2.1 Method 1: Polyacrylate Coating-Based Composite of Nanoparticle and Organic Dye ; 1.2.2 Method 2: Polyacrylate Coating-Based Composite of Two Different Nanoparticles ; 1.2.3 Method 3: Ligand Exchange Approach-Based Composite of Two Different Nanoparticles ; 1.3 Property of Composite Nanoparticles; 1.3.1 Optical Property.
  • 1.3.2 Fluorophore Lifetime Study1.4 Functionalization and Labeling Application of Composite Nanoparticle; 1.5 Conclusion; Acknowledgments; References; Chapter 2 Compatibility of Metal-Induced Fluorescence Enhancement with Applications in Analytical Chemistry and Biosensing ; 2.1 Introduction; 2.2 Homogeneous Protein Sensing MIFE Substrates; 2.2.1 Core-Shell Approach; 2.2.2 Homogeneous Large Au Nanoparticle Substrates; 2.2.3 Commercial Klarite"!Substrate; 2.3 Ag Fractal Structures; 2.3.1 Reasons for High Enhancement Factors in Nanowire Structures.
  • 2.3.2 Ag Dendritic Structure-Homogeneous Silver Fractal2.4 MIFE with Membranes for Protein Dot Blots; 2.5 MIFE with Flow Cytometry Beads and Single Particle Imaging; References; Chapter 3 Plasmonic Enhancement of Molecule-Doped Core-Shell and Nanoshell on Molecular Fluorescence ; 3.1 Introduction; 3.2 Theory; 3.2.1 Plane Wave Interacting with an Multilayered Sphere; 3.2.2 Excited Dipole Interacting with a Multilayered Sphere; 3.2.3 EF on Fluorescence; 3.3 Numerical Results and Discussion; 3.3.1 Core-Shell; 3.3.1.1 Au@SiO2; 3.3.1.2 Ag@SiO2; 3.3.2 Nanoshelled Nanocavity; 3.3.2.1 Au NS.
  • 3.3.2.2 Ag NS3.3.3 NS@SiO2; 3.3.3.1 Au NS@SiO2; 3.3.3.2 Ag NS@SiO2; 3.4 Conclusion; Acknowledgement; References; Chapter 4 Controlling Metal-Enhanced Fluorescence Using Bimetallic Nanoparticles ; 4.1 Introduction; 4.2 Experimental Methods; 4.2.1 Synthesis; 4.2.1.1 NP Synthesis by Sputtering and Annealing; 4.2.1.2 Nanoparticle Synthesis by the Polyol Process; 4.2.2 Particle Characterization; 4.2.3 Fluorescence Spectroscopy; 4.2.3.1 On Sputtered and Annealed Ag-Cu NPs; 4.2.3.2 On Ag-Cu NPs Synthesized with the Polyol Process; 4.3 Theoretical Modeling; 4.3.1 Modeling SPR Using Mie Theory.
  • 4.3.2 Modeling of Metal-Enhanced Fluorescence Modified Gersten-Nitzan Model 4.3.3 Modeling MEF Using Finite-Difference Time-Domain (FDTD) Calculations ; 4.4 Conclusion and Future Directions; References; Chapter 5 Roles of Surface Plasmon Polaritons in Fluorescence Enhancement ; 5.1 Introduction; 5.1.1 Surface Plasmon-Mediated Emission ; 5.1.2 Excitation of Propagating and Localized Surface Plasmon Polaritons in Periodic Metallic Arrays; 5.1.3 Surface Plasmon-Mediated Emission from Periodic Arrays ; 5.2 Experimental; 5.2.1 Sample Preparation; 5.2.2 Optical Characterizations.