Cargando…

RF Positioning : Fundamentals, Applications, and Tools.

This new resource presents a comprehensive view of radio-frequency (RF) positioning. The book is organized to allow readers to progress at a fast pace, from the fundamentals of RF positioning, to the use of advanced tools such as artificial intelligence algorithms and application development environ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Campos, Rafael Saraiva
Otros Autores: Lovisolo, Lisandro
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood : Artech House, 2015.
Colección:GNSS technology and applications series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine-generated contents note: 1.1. Introduction
  • 1.2. Some Basic Terminology
  • 1.2.1. Location or Position
  • 1.2.2. Positioning
  • 1.2.3. Target Mobile Station
  • 1.2.4. Reference or Anchor Station
  • 1.2.5. Radio Determination
  • 1.2.6. Line-of-Position
  • 1.2.7. Accuracy
  • 1.2.8. Precision
  • 1.3. A Brief History of RF Positioning
  • 1.3.1. Telefunken Kompass Sender
  • 1.3.2. Orfordness Rotating Beacon
  • 1.3.3. Sonne
  • 1.3.4. Gee
  • 1.3.5. Oboe
  • 1.3.6. Gee-H
  • 1.3.7. Loran-A
  • 1.3.8. VOR/DME
  • 1.3.9. Loran-C
  • 1.3.10. GNSS
  • 1.3.11. Positioning in Cellular, Wi-Fi, and Sensor Networks
  • 1.3.12. eLoran
  • 1.4. RF Positioning Taxonomy
  • 1.4.1. Classification According to the Position Calculation Technique
  • 1.4.2. Classification According to the MS Participation in the Position Calculation
  • 1.4.3. Classification According to Minimum Number of Reference Stations Required for Position Calculation
  • 1.5. RF Positioning Technical Recommendations and Regulatory Demands
  • 1.5.1. Locating Ships and Aircraft in Distress Conditions
  • 1.5.2. Emergency Call Locating in Cellular Networks
  • 1.6. Summary
  • References
  • 2.1. Introduction
  • 2.2. Multilateration
  • 2.2.1. Circular Multilateration
  • 2.2.2. Hyperbolic Multilateration
  • 2.3. Multiangulation
  • 2.4. Summary
  • References
  • 3.1. Basic Principles
  • 3.2. TOA Estimation
  • 3.2.1. TOA Estimation Using Direct Sequence Spread Spectrum
  • 3.2.2. TOA Estimation Using Matched Filters
  • 3.2.3. Tracking TOA
  • 3.3. TDOA Estimation
  • 3.4. RSS Estimation
  • 3.4.1. AGC
  • 3.4.2. RSS Estimation Using Matched Filters
  • 3.5. AOA Estimation
  • 3.5.1. Basic Principles
  • 3.5.2. Uniform Linear Array
  • 3.6. Some Limits on the Attainable Estimates
  • 3.6.1. CRLB on Distance Estimates by Means of TOA
  • 3.6.2. CRLB on Distance Estimates by Means of RSS
  • 3.6.3. CRLB on Angle Estimates by Means of AOA
  • 3.7. Summary
  • References
  • 4.1. Introduction
  • 4.2. Radio-Frequency Fingerprints
  • 4.3. Correlation Database
  • 4.3.1. CDB Structure
  • 4.3.2. CDBs Built from Field Measurements
  • 4.3.3. CDBs Built from Propagation Modelling
  • 4.3.4. Mixing Predicted and Measured Values
  • 4.3.5. CDB Tuning
  • 4.4. Pattern-Matching of RF Fingerprints
  • 4.4.1. Distance in N-Dimensional RSS Space
  • 4.4.2. Rank Correlation Coefficient
  • 4.5. Search Space Reduction
  • 4.5.1. CDB Filtering
  • 4.6. Location Estimates Averages
  • 4.6.1. KNNs
  • 4.6.2. Moving Average Filter
  • 4.7. Experimental Evaluations
  • 4.7.1. Outdoor Test in a GSM Cellular Network
  • 4.7.2. Indoor Test in Wi-Fi Networks
  • 4.8. Summary
  • References
  • 5.1. Introduction
  • 5.1.1. Brief Review of Cellular Technologies Evolution, from 2G to 4G
  • 5.1.2. 3GPP Technical Specifications Organization
  • 5.2. Cellular Network Intrinsic Positioning Capabilities
  • 5.3. GSM/GPRS/EDGE LCS Architecture
  • 5.3.1. Network Elements
  • 5.3.2. Standard LCS Methods
  • 5.3.3. Radio Resource LCS Protocol
  • 5.4. UMTS LCS Architecture
  • 5.4.1. Network Elements
  • 5.4.2. Standard LCS Methods
  • 5.4.3. Radio Resource Control Protocol
  • 5.5. LTE LCS Architecture
  • 5.5.1. Network Elements
  • 5.5.2. Supported Positioning Methods
  • 5.5.3. LPP
  • 5.6. Summary
  • References
  • 6.1. Introduction
  • 6.2. IEEE 802.11 Networks
  • 6.2.1. Architecture of IEEE 802.11 Networks
  • 6.2.2. Physical Layer
  • 6.2.3. Link Layer
  • 6.3. Positioning in Wi-Fi WLANs
  • 6.3.1. Wi-Fi Outdoor Positioning
  • 6.3.2. Wi-Fi Indoor Positioning
  • 6.4. ZigBee Networks
  • 6.4.1. Overview of WSNs
  • 6.4.2. ZigBee Protocol Stack
  • 6.4.3. ZigBee Network Devices
  • 6.4.4. ZigBee Network Topologies
  • 6.5. Positioning in ZigBee WSNs
  • 6.5.1. Maximum Likelihood Estimation Cooperative Positioning
  • 6.5.2. Residual Weighting
  • 6.5.3. Connectivity-Based Localization
  • 6.6. Summary
  • References
  • 7.1. Introduction
  • 7.2. NSSs
  • 7.2.1. Brief GNSS History
  • 7.2.2. RNSSs
  • 7.2.3. Search and Rescue
  • 7.2.4. Collaborative Services
  • 7.3. GNSS Basics
  • 7.3.1. General Model
  • 7.3.2. Position Fix
  • 7.3.3. Reference Frame
  • 7.3.4. Error Sources
  • 7.3.5. GNSS Receivers
  • 7.3.6. Control Segment: Some Observations
  • 7.4. GNSS Variations
  • 7.4.1. GPS
  • 7.4.2. GLONASS
  • 7.4.3. BeiDou/Compass
  • 7.4.4. GALILEO
  • 7.5. Search and Rescue Satellite System: COSPAS-SARSAT
  • 7.5.1. LEOSAR
  • 7.5.2. GEOSAR
  • 7.5.3. MEOSAR
  • 7.6. Summary
  • References
  • 8.1. Introduction
  • 8.2. Bluetooth Networks
  • 8.2.1. Bluetooth Power Classes
  • 8.2.2. Bluetooth Protocol Architecture
  • 8.2.3. Bluetooth Evolutionary Path
  • 8.3. Positioning in Bluetooth Networks
  • 8.3.1. RSS-Based Multilateration Solutions
  • 8.3.2. Fingerprinting-Based Solutions
  • 8.4. UWB Networks
  • 8.4.1. Definition of UWB Technology
  • 8.4.2. Overview of FCC UWB Regulations
  • 8.4.3. IEEE Task and Study Groups Related to UWB
  • 8.4.4. UWB versus Bluetooth
  • 8.5. Positioning in UWB Networks
  • 8.5.1. Geometric-Positioning
  • 8.5.2. RF Fingerprinting
  • 8.6. Summary
  • References
  • 9.1. Introduction
  • 9.2. Machine Learning
  • 9.2.1. Supervised Learning: Backpropagation ANNs
  • 9.2.2. Unsupervised Learning: Kohonen Layers
  • 9.2.3. Evolutionary Learning: GA
  • 9.3. Fuzzy Logic
  • 9.4. Datasets Used in the Experimental Evaluations
  • 9.4.1. Outdoor Tests in GSM Cellular Networks
  • 9.4.2. Indoor Test in Wi-Fi Networks
  • 9.5. Optimized Search with GA
  • 9.5.1. Overview
  • 9.5.2. Experimental Evaluation in a Cellular Network
  • 9.6. Direct MS Positioning Using Backpropagation ANNs
  • 9.6.1. Overview
  • 9.6.2. Experimental Evaluation in a Cellular Network
  • 9.7. Predicting Location Accuracy with Backpropagation ANNs
  • 9.7.1. Overview
  • 9.7.2. Experimental Evaluation in a Cellular Network
  • 9.8. Multifloor Indoor Positioning with Kohonen Layer and Committees of ANNs
  • 9.8.1. Overview
  • 9.8.2. Unsupervised Clustering Using Kohonen Layer with Conscience
  • 9.8.3. Floor Classification Using Committees of Backpropagation ANNs
  • 9.8.4. Experimental Evaluation in Wi-Fi Networks
  • 9.9. Direct MS Positioning Using an FIS
  • 9.9.1. Overview
  • 9.9.2. Experimental Evaluation in Cellular Networks
  • 9.10. Summary
  • References
  • 10.1. Introduction
  • 10.2. Developing Apps for Android Devices with MIT App Inventor 2
  • 10.2.1. Projects Window
  • 10.2.2. Designer Window
  • 10.2.3. Blocks Window
  • 10.2.4. Testing an App Using MIT App Inventor 2 Companion
  • 10.2.5. Sample App: Geofencing 1.0
  • 10.2.6. Geofencing 1.0 Components
  • 10.2.7. Geofencing 1.0 Event Handlers
  • 10.3. Going a Little Deeper with Android SDK
  • 10.3.1. Android SDK Packages
  • 10.3.2. Supported Operating Systems
  • 10.3.3. Eclipse IDE
  • 10.3.4. ADT Plug-In for Eclipse
  • 10.3.5. ADT Bundle
  • 10.3.6. Setting Up Virtual Devices with the AVD Manager
  • 10.3.7. Fast Virtual Mode with Intel Hardware-Accelerated Executive Manager
  • 10.3.8. Creating an Android Application Project in Eclipse
  • 10.3.9. Creating a Run Configuration in Eclipse
  • 10.3.10. Sample Localization Apps: WiFiTrain and WiFiLoc
  • 10.4. Summary
  • References.