Cargando…

Refining the concept of scientific inference when working with big data : proceedings of a workshop /

The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that h...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wender, Ben A. (rapporteur.)
Autor Corporativo: Refining the Concept of Scientific Inference When Working with Big Data (Workshop)
Formato: Electrónico Congresos, conferencias eBook
Idioma:Inglés
Publicado: Washington (DC) : National Academies Press (US), 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn974583846
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 170401s2017 dcua obt 100 0 eng
010 |a  2017302748 
040 |a NLM  |b eng  |e rda  |e pn  |c NLM  |d YDX  |d CUS  |d MERUC  |d OCLCF  |d N$T  |d EBLCP  |d NLM  |d OCLCO  |d DOS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCA  |d AGLDB  |d IGB  |d CN8ML  |d SNK  |d INTCL  |d MHW  |d BTN  |d AUW  |d OCLCQ  |d VTS  |d EZ9  |d D6H  |d OCLCQ  |d G3B  |d OCLCO  |d OCLCA  |d S8I  |d S8J  |d S9I  |d VT2  |d STF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCA  |d K6U  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO  |d INARC  |d OCLCL 
016 7 |a 101703423  |2 DNLM 
019 |a 974016400  |a 974315220  |a 974471561  |a 974561977  |a 974694402  |a 974749578  |a 974967859  |a 975045109  |a 1021266744  |a 1262686854  |a 1412565414 
020 |a 9780309454452 
020 |a 030945445X 
020 |z 9780309454445 
020 |z 0309454441 
029 0 |a NLM  |b 101703423 
029 1 |a AU@  |b 000059746774 
035 |a (OCoLC)974583846  |z (OCoLC)974016400  |z (OCoLC)974315220  |z (OCoLC)974471561  |z (OCoLC)974561977  |z (OCoLC)974694402  |z (OCoLC)974749578  |z (OCoLC)974967859  |z (OCoLC)975045109  |z (OCoLC)1021266744  |z (OCoLC)1262686854  |z (OCoLC)1412565414 
042 |a pcc 
043 |a n-us--- 
050 4 |a QA76.9.B45 
060 1 0 |a QA 76.9.B45 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510 
049 |a UAMI 
100 1 |a Wender, Ben A.,  |e rapporteur. 
245 1 0 |a Refining the concept of scientific inference when working with big data :  |b proceedings of a workshop /  |c Ben A. Wender, rapporteur ; Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and their Applications, Division on Engineering and Physical Sciences, the National Academies of Sciences, Engineering, Medicine. 
264 1 |a Washington (DC) :  |b National Academies Press (US),  |c 2017. 
300 |a 1 online resource (1 PDF file (xii, 101 pages)) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references. 
520 3 |a The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013). Without careful consideration of the suitability of both available data and the statistical models applied, analysis of big data may result in misleading correlations and false discoveries, which can potentially undermine confidence in scientific research if the results are not reproducible. In June 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine critical challenges and opportunities in performing scientific inference reliably when working with big data. Participants explored new methodologic developments that hold significant promise and potential research program areas for the future. This publication summarizes the presentations and discussions from the workshop. 
536 |a This workshop was supported by Contract No. HHSN26300076 with the National Institutes of Health and Grant No. DMS-1351163 from the National Science Foundation. Any opinions, findings, or conclusions expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project. 
588 0 |a Online resource; title from PDF title page (viewed April 28, 2017). 
505 0 |a Introduction -- Framing the workshop -- Inference about discoveries basedon integration of diverse data sets -- Inference about causal discoveries driven by large observational data -- Inference when regularization is used to simplify fitting of high-dimensional models -- Panel discussion -- References -- Appendixes. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Big data  |v Congresses. 
650 0 |a Mathematical statistics  |v Congresses. 
650 0 |a Science  |x Methodology  |v Congresses. 
650 0 |a Experimental design  |v Congresses. 
650 0 |a Science. 
650 0 |a Data sets. 
650 0 |a Statistics. 
650 6 |a Données volumineuses  |v Congrès. 
650 6 |a Sciences  |x Méthodologie  |v Congrès. 
650 6 |a Plan d'expérience  |v Congrès. 
650 6 |a Sciences. 
650 6 |a Jeux de données. 
650 6 |a Statistiques. 
650 6 |a Statistique. 
650 7 |a sciences (philosophy)  |2 aat 
650 7 |a science (modern discipline)  |2 aat 
650 7 |a statistics.  |2 aat 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Statistics  |2 fast 
650 7 |a Science  |2 fast 
650 7 |a Data sets  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Experimental design  |2 fast 
650 7 |a Mathematical statistics  |2 fast 
650 7 |a Science  |x Methodology  |2 fast 
650 1 2 |a Science 
650 2 2 |a Datasets as Topic 
650 2 2 |a Statistics as Topic 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
655 2 |a Congress 
710 2 |a National Academies of Sciences, Engineering, and Medicine (U.S.).  |b Committee on Applied and Theoretical Statistics,  |e issuing body. 
711 2 |a Refining the Concept of Scientific Inference When Working with Big Data (Workshop)  |d (2016 :  |c Washington, D.C.) 
758 |i has work:  |a Refining the concept of scientific inference when working with big data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGqXFQ4WfFHCf87RpmKQVP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a National Academies of Sciences, Engineering, and Medicine.  |t Refining the concept of scientific inference when working with big data : proceedings of a workshop.  |d Washington, District of Columbia : The National Academies Press, ©2017  |h xii, 101 pages  |z 9780309454445 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4812417  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36565791 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36618367 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4812417 
938 |a EBSCOhost  |b EBSC  |n 1487603 
938 |a YBP Library Services  |b YANK  |n 13519598 
938 |a Internet Archive  |b INAR  |n refiningconcepto0000wend 
994 |a 92  |b IZTAP