|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn974035692 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
170227s2017 mau ob 001 0 eng |
010 |
|
|
|a 2017009142
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d N$T
|d DG1
|d YDX
|d IDEBK
|d EBLCP
|d MERUC
|d COO
|d UPM
|d OTZ
|d DEBBG
|d KNOVL
|d OCLCF
|d STF
|d LOA
|d CUY
|d KSU
|d ZCU
|d ICG
|d CNNOR
|d K6U
|d CUS
|d U3W
|d CEF
|d CNCEN
|d ERL
|d LVT
|d S8J
|d TKN
|d D6H
|d UAB
|d YOU
|d DKC
|d AU@
|d ERF
|d UKMGB
|d DLC
|d OCLCO
|d SDF
|d ELBRO
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
015 |
|
|
|a GBB750476
|2 bnb
|
016 |
7 |
|
|a 018270046
|2 Uk
|
020 |
|
|
|a 9781119283652
|q (pdf)
|
020 |
|
|
|a 1119283655
|
020 |
|
|
|a 9781119283669
|q (epub)
|
020 |
|
|
|a 1119283663
|
020 |
|
|
|z 9781119283645
|q (hardcover)
|
020 |
|
|
|a 9781119283676
|q (electronic bk.)
|
020 |
|
|
|a 1119283671
|q (electronic bk.)
|
020 |
|
|
|a 9781523115037
|q (electronic bk.)
|
020 |
|
|
|a 1523115033
|q (electronic bk.)
|
020 |
|
|
|z 1119283647
|
029 |
1 |
|
|a UKMGB
|b 018270046
|
029 |
1 |
|
|a DEBSZ
|b 491139535
|
029 |
1 |
|
|a CHVBK
|b 483028126
|
029 |
1 |
|
|a CHNEW
|b 000948338
|
029 |
1 |
|
|a CHBIS
|b 011081509
|
029 |
1 |
|
|a AU@
|b 000059639265
|
029 |
1 |
|
|a AU@
|b 000070215856
|
035 |
|
|
|a (OCoLC)974035692
|
037 |
|
|
|a 9781119283669
|b Wiley
|
042 |
|
|
|a pcc
|
050 |
1 |
0 |
|a TP261.H9
|
072 |
|
7 |
|a TEC
|x 031000
|2 bisacsh
|
082 |
0 |
0 |
|a 665.8/1
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Hydrogen production technologies /
|c [edited by] Mehmet Sankir and Nurdan Demirci Sankir.
|
264 |
|
1 |
|a Beverly, MA :
|b Scrivener Publishing ;
|a Hoboken, NJ :
|b John Wiley & Sons,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Advances in hydrogen production and storage
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Catalytic and Electrochemical Hydrogen Production -- 1 Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling -- 1.1 Introduction -- 1.2 Catalyst Development for the Steam Reforming Process -- 1.2.1 Catalyst Development for the Steam Reforming of Methanol (SRM) -- 1.2.2 Catalyst Development for the Steam Reforming of Ethanol (SRE) -- 1.2.2.1 Co-Based Catalysts for SRE -- 1.2.2.2 Ni-Based Catalysts for SRE -- 1.2.2.3 Bimetallic-Based Catalysts for SRE -- 1.2.3 Catalyst Development for the Steam Reforming of Glycerol (SRG) -- 1.3 Kinetics and Reaction Mechanism for Steam Reforming of Oxygenated Hydrocarbons -- 1.3.1 Surface Reaction Mechanism for SRM -- 1.3.2 Surface Reaction Mechanism for SRE -- 1.3.3 Surface Reaction Mechanism for SRG -- 1.4 Reactor Modeling and Simulation in Steam Reforming of Oxygenated Hydrocarbons -- References -- 2 Ammonia Decomposition for Decentralized Hydrogen Production in Microchannel Reactors: Experiments and CFD Simulations -- 2.1 Introduction -- 2.2 Ammonia Decomposition for Hydrogen Production -- 2.2.1 Ammonia as a Hydrogen Carrier -- 2.2.2 Thermodynamics of Ammonia Decomposition -- 2.2.3 Reaction Mechanism and Kinetics for Ammonia Decomposition -- 2.2.3.1 Effect of Ammonia Concentration -- 2.2.3.2 Effect of Hydrogen Concentration -- 2.2.4 Current Status for Hydrogen Production Using Ammonia Decomposition -- 2.2.4.1 Microreactors for Ammonia Decomposition -- 2.3 Ammonia-Fueled Microchannel Reactors for Hydrogen Production: Experiments -- 2.3.1 Microchannel Reactor Design -- 2.3.2 Reactor Operation and Performance -- 2.3.2.1 Microchannel Reactor Operation -- 2.3.2.2 Performance and Operational Considerations -- 2.3.2.3 Performance Comparison with Other Ammonia Microreactors.
|
505 |
8 |
|
|a 2.4 CFD Simulation of Hydrogen Production in Ammonia-Fueled Microchannel Reactors -- 2.4.1 Model Validation -- 2.4.2 Velocity, Temperature and Concentration Distributions -- 2.4.3 Evaluation of Mass Transport Limitations -- 2.4.4 Model Limitations: Towards Multiscale Simulations -- 2.5 Summary -- Acknowledgments -- References -- 3 Hydrogen Production with Membrane Systems -- 3.1 Introduction -- 3.2 Pd-Based Membranes -- 3.2.1 Long-Term Stability of Ceramic Supported Thin Pd-Based Membranes -- 3.2.2 Long-Term Stability of Metallic Supported Thin Pd-Based Membranes -- 3.3 Fuel Reforming in Membrane Reactors for Hydrogen Production -- 3.3.1 Ceramic Supported Pd-Based Membrane Reactor and Comparison with Commercial Membrane -- 3.3.2 Metallic Supported Pd-Based Membrane Reactor -- 3.4 Thermodynamic and Economic Analysis of Fluidized Bed Membrane Reactors for Methane Reforming -- 3.4.1 Comparison of Membrane Reactors to Emergent Technologies -- 3.4.1.1 Methods and Assumptions -- 3.4.1.2 Comparison -- 3.4.2 Techno-Economical Comparison of Membrane Reactors to Benchmark Reforming Plant -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Catalytic Hydrogen Production from Bioethanol -- 4.1 Introduction -- 4.2 Production Technology Overview -- 4.2.1 Fermentative Hydrogen Production -- 4.2.2 Photocatalytic Hydrogen Production -- 4.2.3 Aqueous Phase Reforming -- 4.2.4 CO2 Dry Reforming -- 4.2.5 Plasma Reforming -- 4.2.6 Partial Oxidation -- 4.2.7 Steam Reforming -- 4.3 Catalyst Overview -- 4.4 Catalyst Optimization Strategies -- 4.5 Reaction Mechanism and Kinetic Studies -- 4.6 Computational Approaches -- 4.7 Economic Considerations -- 4.8 Future Development Directions -- Acknowledgment -- References -- 5 Hydrogen Generation from the Hydrolysis of Ammonia Borane Using Transition Metal Nanoparticles as Catalyst -- 5.1 Introduction.
|
505 |
8 |
|
|a 5.2 Transition Metal Nanoparticles in Catalysis -- 5.3 Preparation, Stabilization and Characterization of Metal Nanoparticles -- 5.4 Transition Metal Nanoparticles in Hydrogen Generation from the Hydrolysis of Ammonia Borane -- 5.5 Durability of Catalysts in Hydrolysis of Ammonia Borane -- 5.6 Conclusion -- References -- 6 Hydrogen Production by Water Electrolysis -- 6.1 Historical Aspects of Water Electrolysis -- 6.2 Fundamentals of Electrolysis -- 6.2.1 Thermodynamics -- 6.2.2 Kinetics and Efficiencies -- 6.3 Modern Status of Electrolysis -- 6.3.1 Water Electrolysis Technologies -- 6.3.2 Alkaline Water Electrolysis -- 6.3.3 PEM Water Electrolysis -- 6.3.4 High Temperature Water Electrolysis -- 6.4 Perspectives of Hydrogen Production by Electrolysis -- Acknowledgment -- References -- 7 Electrochemical Hydrogen Production from SO2 and Water in a SDE Electrolyzer -- 7.1 Introduction -- 7.2 Membrane Characterization -- 7.2.1 Weight Change -- 7.2.2 Ion Exchange Capacity (IEC) -- 7.2.3 TGA-MS -- 7.3 MEA Characterization -- 7.3.1 MEA Manufacture -- 7.3.2 MEA Characterization -- 7.4 Effect of Anode Impurities -- 7.5 High Temperature SO2 Electrolysis -- 7.6 Conclusion -- References -- Part II Bio Hydrogen Production -- 8 Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil -- 8.1 Introduction -- 8.2 Biomass Pyrolysis to Produce Bio-Oils -- 8.2.1 Fast Pyrolysis for Bio-Oil Production -- 8.2.2 Pyrolysis Reactions -- 8.2.2.1 Hemicellulose Pyrolysis -- 8.2.2.2 Cellulose Pyrolysis -- 8.2.2.3 Lignin Pyrolysis -- 8.2.2.4 Char Formation Process -- 8.2.3 Influence of the Pretreatment of Raw Biomass and Pyrolysis Paramenters on Bio-Oil Production -- 8.2.4 Pyrolysis Reactors -- 8.2.4.1 Drop Tube Reactor -- 8.2.4.2 Bubbling Fluid Beds -- 8.2.4.3 Circulating Fluid Beds and Transported Beds -- 8.2.4.4 Rotating Cone -- 8.2.4.5 Ablative Pyrolysis.
|
505 |
8 |
|
|a 8.2.4.6 Vacuum Pyrolysis -- 8.2.4.7 Screw or Auger Reactors -- 8.3 Bio-oil Reforming Processes -- 8.3.1 Bio-oil Reforming Reactions -- 8.3.2 Reforming Catalysts -- 8.3.2.1 Non-Noble Metal-Based Catalysts -- 8.3.2.2 Noble Metal-Based Catalysts -- 8.3.2.3 Conventional Supports -- 8.3.2.4 Non-Conventional Supports -- 8.3.3 Reaction Systems -- 8.3.4 Reforming Process Intensifications -- 8.3.4.1 Sorption Enhanced Steam Reforming -- 8.3.4.2 Chemical Looping -- 8.3.4.3 Sorption Enhanced Chemical Looping -- 8.4 Future Prospects -- References -- 9 Production of a Clean Hydrogen-Rich Gas by the Staged Gasification of Biomass and Plastic Waste -- 9.1 Introduction -- 9.2 Chemistry of Gasification -- 9.3 Tar Cracking and H2 Production -- 9.4 Staged Gasification -- 9.4.1 Two-Stage UOS Gasification Process -- 9.4.2 Three-Stage UOS Gasification Process -- 9.5 Experimental Results and Discussion -- 9.5.1 Effects of Type of Feed Material on H2 Production -- 9.5.2 Effect of Activated Carbon on H2 Production -- 9.5.3 Effects of Other Reaction Parameters on H2 Production -- 9.5.3.1 Temperature -- 9.5.3.2 ER -- 9.5.3.3 Gasifying Agent -- 9.5.4 Comparison of Two-Stage and Three-Stage Gasifiers -- 9.5.5 Tar Removal Mechanism over Activated Carbon -- 9.5.6 Deactivation of Activated Carbon and Long-Term Gasification Experiments -- 9.5.7 Removal of Other Impurities (NH3, H2S, and HCl) -- 9.6 Conclusions -- References -- 10 Enhancement of Bio-Hydrogen Production Technologies by Sulphate-Reducing Bacteria -- 10.1 Introduction -- 10.2 Sulphate-Reducing Bacteria for H2 Production -- 10.3 Mathematical Modeling of the SR Fermentation -- 10.4 Bifurcation Analysis -- 10.5 Process Control Strategies -- 10.6 Conclusions -- Acknowledgment -- Nomenclature -- References.
|
505 |
8 |
|
|a 11 Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications -- 11.1 Introduction -- 11.2 Principles of MEC for Hydrogen Production -- 11.3 Thermodynamics of MEC -- 11.4 Factors Influencing the Performance of MECs -- 11.4.1 Biological Factors -- 11.4.1.1 Electrochemically Active Bacteria (EAB) in MECs -- 11.4.1.2 Extracellular Electron Transfer in MECs -- 11.4.1.3 Inoculation and Source of Inoculum -- 11.4.2 Electrode Materials Used in MECs -- 11.4.2.1 Anode Electrode Materials -- 11.4.2.2 Cathode Electrode Materials or Catalysts -- 11.4.3 Membrane or Separator -- 11.4.4 Physical Factors -- 11.4.5 Substrates Used in MECs -- 11.4.6 MEC Operational Factors -- 11.4.6.1 Applied Voltage -- 11.4.6.2 Other Key Operational Factors -- 11.5 Current Application of MECs -- 11.5.1 Hydrogen Production and Wastewater Treatment -- 11.5.1.1 Treatment of DWW Using MECs -- 11.5.1.2 Use of MECs for Treatment of IWW and Other Types of WW -- 11.5.2 Application of MECs in Removal of Ammonium or Nitrogen from Urine -- 11.5.3 MECs for Valuable Products Synthesis -- 11.5.3.1 Methane (CH4) -- 11.5.3.2 Acetate -- 11.5.3.3 Hydrogen Peroxide (H2O2) -- 11.5.3.4 Ethanol (C2H5OH) -- 11.5.3.5 Formic Acid (HCOOH) -- 11.6 Conclusions and Prospective Application of MECs -- Acknowledgments -- References -- 12 Algae to Hydrogen: Novel Energy-Efficient Co-Production of Hydrogen and Power -- 12.1 Introduction -- 12.2 Algae Potential and Characteristics -- 12.2.1 Algae Potential -- 12.2.2 Types of Algae -- 12.2.3 Compositions of Algae -- 12.3 Energy-Efficient Energy Harvesting Technologies -- 12.4 Pretreatment (Drying) -- 12.5 Conversion of Algae to Hydrogen-Rich Gases -- 12.5.1 SCWG for Algae -- 12.5.1.1 Integrated System with SCWG -- 12.5.1.2 Analysis of the Integrated System.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Sustainable Energy & Development
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a Knovel
|b ACADEMIC - Chemistry & Chemical Engineering
|
650 |
|
0 |
|a Hydrogen as fuel
|x Technological innovations.
|
650 |
|
0 |
|a Hydrogen
|x Biotechnology.
|
650 |
|
0 |
|a Hydrogen industry
|x Technological innovations.
|
650 |
|
6 |
|a Hydrogène (Combustible)
|x Innovations.
|
650 |
|
6 |
|a Hydrogène
|x Biotechnologie.
|
650 |
|
6 |
|a Hydrogène
|x Industrie
|x Innovations.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Power Resources
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Hydrogen
|x Biotechnology
|2 fast
|
700 |
1 |
|
|a Sankir, Mehmet,
|e editor.
|
700 |
1 |
|
|a Demirci Sankir, Nurdan,
|e editor.
|
758 |
|
|
|i has work:
|a Hydrogen Production Technologies (Text)
|1 https://id.oclc.org/worldcat/entity/E39PD33hMdM33WdwhBvyVcD4Rq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Hydrogen production technologies
|d Beverly, MA : Scrivener Publishing ; Hoboken, NJ : John Wiley & Sons, 2017
|z 9781119283645
|w (DLC) 2017001107
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4829162
|z Texto completo
|
938 |
|
|
|a eLibro
|b ELBO
|n ELB177340
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13861112
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13832494
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13956757
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis35065314
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1489127
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4829162
|
994 |
|
|
|a 92
|b IZTAP
|