Cargando…

Hydrogen production technologies /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sankir, Mehmet (Editor ), Demirci Sankir, Nurdan (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Beverly, MA : Hoboken, NJ : Scrivener Publishing ; John Wiley & Sons, 2017.
Colección:Advances in hydrogen production and storage
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn974035692
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 170227s2017 mau ob 001 0 eng
010 |a  2017009142 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d DG1  |d YDX  |d IDEBK  |d EBLCP  |d MERUC  |d COO  |d UPM  |d OTZ  |d DEBBG  |d KNOVL  |d OCLCF  |d STF  |d LOA  |d CUY  |d KSU  |d ZCU  |d ICG  |d CNNOR  |d K6U  |d CUS  |d U3W  |d CEF  |d CNCEN  |d ERL  |d LVT  |d S8J  |d TKN  |d D6H  |d UAB  |d YOU  |d DKC  |d AU@  |d ERF  |d UKMGB  |d DLC  |d OCLCO  |d SDF  |d ELBRO  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBB750476  |2 bnb 
016 7 |a 018270046  |2 Uk 
020 |a 9781119283652  |q (pdf) 
020 |a 1119283655 
020 |a 9781119283669  |q (epub) 
020 |a 1119283663 
020 |z 9781119283645  |q (hardcover) 
020 |a 9781119283676  |q (electronic bk.) 
020 |a 1119283671  |q (electronic bk.) 
020 |a 9781523115037  |q (electronic bk.) 
020 |a 1523115033  |q (electronic bk.) 
020 |z 1119283647 
029 1 |a UKMGB  |b 018270046 
029 1 |a DEBSZ  |b 491139535 
029 1 |a CHVBK  |b 483028126 
029 1 |a CHNEW  |b 000948338 
029 1 |a CHBIS  |b 011081509 
029 1 |a AU@  |b 000059639265 
029 1 |a AU@  |b 000070215856 
035 |a (OCoLC)974035692 
037 |a 9781119283669  |b Wiley 
042 |a pcc 
050 1 0 |a TP261.H9 
072 7 |a TEC  |x 031000  |2 bisacsh 
082 0 0 |a 665.8/1  |2 23 
049 |a UAMI 
245 0 0 |a Hydrogen production technologies /  |c [edited by] Mehmet Sankir and Nurdan Demirci Sankir. 
264 1 |a Beverly, MA :  |b Scrivener Publishing ;  |a Hoboken, NJ :  |b John Wiley & Sons,  |c 2017. 
300 |a 1 online resource 
336 |a text  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Advances in hydrogen production and storage 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Catalytic and Electrochemical Hydrogen Production -- 1 Hydrogen Production from Oxygenated Hydrocarbons: Review of Catalyst Development, Reaction Mechanism and Reactor Modeling -- 1.1 Introduction -- 1.2 Catalyst Development for the Steam Reforming Process -- 1.2.1 Catalyst Development for the Steam Reforming of Methanol (SRM) -- 1.2.2 Catalyst Development for the Steam Reforming of Ethanol (SRE) -- 1.2.2.1 Co-Based Catalysts for SRE -- 1.2.2.2 Ni-Based Catalysts for SRE -- 1.2.2.3 Bimetallic-Based Catalysts for SRE -- 1.2.3 Catalyst Development for the Steam Reforming of Glycerol (SRG) -- 1.3 Kinetics and Reaction Mechanism for Steam Reforming of Oxygenated Hydrocarbons -- 1.3.1 Surface Reaction Mechanism for SRM -- 1.3.2 Surface Reaction Mechanism for SRE -- 1.3.3 Surface Reaction Mechanism for SRG -- 1.4 Reactor Modeling and Simulation in Steam Reforming of Oxygenated Hydrocarbons -- References -- 2 Ammonia Decomposition for Decentralized Hydrogen Production in Microchannel Reactors: Experiments and CFD Simulations -- 2.1 Introduction -- 2.2 Ammonia Decomposition for Hydrogen Production -- 2.2.1 Ammonia as a Hydrogen Carrier -- 2.2.2 Thermodynamics of Ammonia Decomposition -- 2.2.3 Reaction Mechanism and Kinetics for Ammonia Decomposition -- 2.2.3.1 Effect of Ammonia Concentration -- 2.2.3.2 Effect of Hydrogen Concentration -- 2.2.4 Current Status for Hydrogen Production Using Ammonia Decomposition -- 2.2.4.1 Microreactors for Ammonia Decomposition -- 2.3 Ammonia-Fueled Microchannel Reactors for Hydrogen Production: Experiments -- 2.3.1 Microchannel Reactor Design -- 2.3.2 Reactor Operation and Performance -- 2.3.2.1 Microchannel Reactor Operation -- 2.3.2.2 Performance and Operational Considerations -- 2.3.2.3 Performance Comparison with Other Ammonia Microreactors. 
505 8 |a 2.4 CFD Simulation of Hydrogen Production in Ammonia-Fueled Microchannel Reactors -- 2.4.1 Model Validation -- 2.4.2 Velocity, Temperature and Concentration Distributions -- 2.4.3 Evaluation of Mass Transport Limitations -- 2.4.4 Model Limitations: Towards Multiscale Simulations -- 2.5 Summary -- Acknowledgments -- References -- 3 Hydrogen Production with Membrane Systems -- 3.1 Introduction -- 3.2 Pd-Based Membranes -- 3.2.1 Long-Term Stability of Ceramic Supported Thin Pd-Based Membranes -- 3.2.2 Long-Term Stability of Metallic Supported Thin Pd-Based Membranes -- 3.3 Fuel Reforming in Membrane Reactors for Hydrogen Production -- 3.3.1 Ceramic Supported Pd-Based Membrane Reactor and Comparison with Commercial Membrane -- 3.3.2 Metallic Supported Pd-Based Membrane Reactor -- 3.4 Thermodynamic and Economic Analysis of Fluidized Bed Membrane Reactors for Methane Reforming -- 3.4.1 Comparison of Membrane Reactors to Emergent Technologies -- 3.4.1.1 Methods and Assumptions -- 3.4.1.2 Comparison -- 3.4.2 Techno-Economical Comparison of Membrane Reactors to Benchmark Reforming Plant -- 3.5 Conclusions -- Acknowledgments -- References -- 4 Catalytic Hydrogen Production from Bioethanol -- 4.1 Introduction -- 4.2 Production Technology Overview -- 4.2.1 Fermentative Hydrogen Production -- 4.2.2 Photocatalytic Hydrogen Production -- 4.2.3 Aqueous Phase Reforming -- 4.2.4 CO2 Dry Reforming -- 4.2.5 Plasma Reforming -- 4.2.6 Partial Oxidation -- 4.2.7 Steam Reforming -- 4.3 Catalyst Overview -- 4.4 Catalyst Optimization Strategies -- 4.5 Reaction Mechanism and Kinetic Studies -- 4.6 Computational Approaches -- 4.7 Economic Considerations -- 4.8 Future Development Directions -- Acknowledgment -- References -- 5 Hydrogen Generation from the Hydrolysis of Ammonia Borane Using Transition Metal Nanoparticles as Catalyst -- 5.1 Introduction. 
505 8 |a 5.2 Transition Metal Nanoparticles in Catalysis -- 5.3 Preparation, Stabilization and Characterization of Metal Nanoparticles -- 5.4 Transition Metal Nanoparticles in Hydrogen Generation from the Hydrolysis of Ammonia Borane -- 5.5 Durability of Catalysts in Hydrolysis of Ammonia Borane -- 5.6 Conclusion -- References -- 6 Hydrogen Production by Water Electrolysis -- 6.1 Historical Aspects of Water Electrolysis -- 6.2 Fundamentals of Electrolysis -- 6.2.1 Thermodynamics -- 6.2.2 Kinetics and Efficiencies -- 6.3 Modern Status of Electrolysis -- 6.3.1 Water Electrolysis Technologies -- 6.3.2 Alkaline Water Electrolysis -- 6.3.3 PEM Water Electrolysis -- 6.3.4 High Temperature Water Electrolysis -- 6.4 Perspectives of Hydrogen Production by Electrolysis -- Acknowledgment -- References -- 7 Electrochemical Hydrogen Production from SO2 and Water in a SDE Electrolyzer -- 7.1 Introduction -- 7.2 Membrane Characterization -- 7.2.1 Weight Change -- 7.2.2 Ion Exchange Capacity (IEC) -- 7.2.3 TGA-MS -- 7.3 MEA Characterization -- 7.3.1 MEA Manufacture -- 7.3.2 MEA Characterization -- 7.4 Effect of Anode Impurities -- 7.5 High Temperature SO2 Electrolysis -- 7.6 Conclusion -- References -- Part II Bio Hydrogen Production -- 8 Biomass Fast Pyrolysis for Hydrogen Production from Bio-Oil -- 8.1 Introduction -- 8.2 Biomass Pyrolysis to Produce Bio-Oils -- 8.2.1 Fast Pyrolysis for Bio-Oil Production -- 8.2.2 Pyrolysis Reactions -- 8.2.2.1 Hemicellulose Pyrolysis -- 8.2.2.2 Cellulose Pyrolysis -- 8.2.2.3 Lignin Pyrolysis -- 8.2.2.4 Char Formation Process -- 8.2.3 Influence of the Pretreatment of Raw Biomass and Pyrolysis Paramenters on Bio-Oil Production -- 8.2.4 Pyrolysis Reactors -- 8.2.4.1 Drop Tube Reactor -- 8.2.4.2 Bubbling Fluid Beds -- 8.2.4.3 Circulating Fluid Beds and Transported Beds -- 8.2.4.4 Rotating Cone -- 8.2.4.5 Ablative Pyrolysis. 
505 8 |a 8.2.4.6 Vacuum Pyrolysis -- 8.2.4.7 Screw or Auger Reactors -- 8.3 Bio-oil Reforming Processes -- 8.3.1 Bio-oil Reforming Reactions -- 8.3.2 Reforming Catalysts -- 8.3.2.1 Non-Noble Metal-Based Catalysts -- 8.3.2.2 Noble Metal-Based Catalysts -- 8.3.2.3 Conventional Supports -- 8.3.2.4 Non-Conventional Supports -- 8.3.3 Reaction Systems -- 8.3.4 Reforming Process Intensifications -- 8.3.4.1 Sorption Enhanced Steam Reforming -- 8.3.4.2 Chemical Looping -- 8.3.4.3 Sorption Enhanced Chemical Looping -- 8.4 Future Prospects -- References -- 9 Production of a Clean Hydrogen-Rich Gas by the Staged Gasification of Biomass and Plastic Waste -- 9.1 Introduction -- 9.2 Chemistry of Gasification -- 9.3 Tar Cracking and H2 Production -- 9.4 Staged Gasification -- 9.4.1 Two-Stage UOS Gasification Process -- 9.4.2 Three-Stage UOS Gasification Process -- 9.5 Experimental Results and Discussion -- 9.5.1 Effects of Type of Feed Material on H2 Production -- 9.5.2 Effect of Activated Carbon on H2 Production -- 9.5.3 Effects of Other Reaction Parameters on H2 Production -- 9.5.3.1 Temperature -- 9.5.3.2 ER -- 9.5.3.3 Gasifying Agent -- 9.5.4 Comparison of Two-Stage and Three-Stage Gasifiers -- 9.5.5 Tar Removal Mechanism over Activated Carbon -- 9.5.6 Deactivation of Activated Carbon and Long-Term Gasification Experiments -- 9.5.7 Removal of Other Impurities (NH3, H2S, and HCl) -- 9.6 Conclusions -- References -- 10 Enhancement of Bio-Hydrogen Production Technologies by Sulphate-Reducing Bacteria -- 10.1 Introduction -- 10.2 Sulphate-Reducing Bacteria for H2 Production -- 10.3 Mathematical Modeling of the SR Fermentation -- 10.4 Bifurcation Analysis -- 10.5 Process Control Strategies -- 10.6 Conclusions -- Acknowledgment -- Nomenclature -- References. 
505 8 |a 11 Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications -- 11.1 Introduction -- 11.2 Principles of MEC for Hydrogen Production -- 11.3 Thermodynamics of MEC -- 11.4 Factors Influencing the Performance of MECs -- 11.4.1 Biological Factors -- 11.4.1.1 Electrochemically Active Bacteria (EAB) in MECs -- 11.4.1.2 Extracellular Electron Transfer in MECs -- 11.4.1.3 Inoculation and Source of Inoculum -- 11.4.2 Electrode Materials Used in MECs -- 11.4.2.1 Anode Electrode Materials -- 11.4.2.2 Cathode Electrode Materials or Catalysts -- 11.4.3 Membrane or Separator -- 11.4.4 Physical Factors -- 11.4.5 Substrates Used in MECs -- 11.4.6 MEC Operational Factors -- 11.4.6.1 Applied Voltage -- 11.4.6.2 Other Key Operational Factors -- 11.5 Current Application of MECs -- 11.5.1 Hydrogen Production and Wastewater Treatment -- 11.5.1.1 Treatment of DWW Using MECs -- 11.5.1.2 Use of MECs for Treatment of IWW and Other Types of WW -- 11.5.2 Application of MECs in Removal of Ammonium or Nitrogen from Urine -- 11.5.3 MECs for Valuable Products Synthesis -- 11.5.3.1 Methane (CH4) -- 11.5.3.2 Acetate -- 11.5.3.3 Hydrogen Peroxide (H2O2) -- 11.5.3.4 Ethanol (C2H5OH) -- 11.5.3.5 Formic Acid (HCOOH) -- 11.6 Conclusions and Prospective Application of MECs -- Acknowledgments -- References -- 12 Algae to Hydrogen: Novel Energy-Efficient Co-Production of Hydrogen and Power -- 12.1 Introduction -- 12.2 Algae Potential and Characteristics -- 12.2.1 Algae Potential -- 12.2.2 Types of Algae -- 12.2.3 Compositions of Algae -- 12.3 Energy-Efficient Energy Harvesting Technologies -- 12.4 Pretreatment (Drying) -- 12.5 Conversion of Algae to Hydrogen-Rich Gases -- 12.5.1 SCWG for Algae -- 12.5.1.1 Integrated System with SCWG -- 12.5.1.2 Analysis of the Integrated System. 
590 |a Knovel  |b ACADEMIC - Sustainable Energy & Development 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a Knovel  |b ACADEMIC - Chemistry & Chemical Engineering 
650 0 |a Hydrogen as fuel  |x Technological innovations. 
650 0 |a Hydrogen  |x Biotechnology. 
650 0 |a Hydrogen industry  |x Technological innovations. 
650 6 |a Hydrogène (Combustible)  |x Innovations. 
650 6 |a Hydrogène  |x Biotechnologie. 
650 6 |a Hydrogène  |x Industrie  |x Innovations. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Power Resources  |x General.  |2 bisacsh 
650 7 |a Hydrogen  |x Biotechnology  |2 fast 
700 1 |a Sankir, Mehmet,  |e editor. 
700 1 |a Demirci Sankir, Nurdan,  |e editor. 
758 |i has work:  |a Hydrogen Production Technologies (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD33hMdM33WdwhBvyVcD4Rq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Hydrogen production technologies  |d Beverly, MA : Scrivener Publishing ; Hoboken, NJ : John Wiley & Sons, 2017  |z 9781119283645  |w (DLC) 2017001107 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4829162  |z Texto completo 
938 |a eLibro  |b ELBO  |n ELB177340 
938 |a YBP Library Services  |b YANK  |n 13861112 
938 |a YBP Library Services  |b YANK  |n 13832494 
938 |a YBP Library Services  |b YANK  |n 13956757 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis35065314 
938 |a EBSCOhost  |b EBSC  |n 1489127 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4829162 
994 |a 92  |b IZTAP