Cargando…

Probability and conditional expectation : fundamentals for the empirical sciences /

Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Steyer, Rolf, 1950-
Otros Autores: Nagel, Werner
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : John Wiley & Sons, Inc., 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn973882796
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 170227s2017 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDX  |d IDEBK  |d EBLCP  |d DG1  |d COO  |d RECBK  |d UPM  |d OCLCO  |d OTZ  |d OCLCQ  |d OCLCA  |d DEBSZ  |d OCLCQ  |d MERUC  |d DEBBG  |d OCLCQ  |d COCUF  |d CNNOR  |d STF  |d LOA  |d CUY  |d KSU  |d ZCU  |d ICG  |d K6U  |d VT2  |d U3W  |d OCLCO  |d CNCEN  |d WYU  |d OCLCQ  |d G3B  |d LVT  |d S8J  |d S9I  |d TKN  |d OCLCQ  |d D6H  |d ESU  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781119243502  |q (electronic bk.) 
020 |a 1119243505  |q (electronic bk.) 
020 |a 9781119243496  |q (electronic bk.) 
020 |a 1119243491  |q (electronic bk.) 
020 |z 9781119243526 
020 |z 1119243521 
020 |z 9781119243489  |q (epub) 
029 1 |a AU@  |b 000059955701 
029 1 |a AU@  |b 000070477028 
029 1 |a CHBIS  |b 011081500 
029 1 |a CHNEW  |b 000946814 
029 1 |a CHNEW  |b 000948331 
029 1 |a CHVBK  |b 483028053 
029 1 |a DEBSZ  |b 491139497 
035 |a (OCoLC)973882796 
050 4 |a QA273  |b .S75325 2017eb 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Steyer, Rolf,  |d 1950-  |1 https://id.oclc.org/worldcat/entity/E39PCjCXbGFbKH8cr6MyVrtgw3 
245 1 0 |a Probability and conditional expectation :  |b fundamentals for the empirical sciences /  |c Rolf Steyer, Werner Nagel. 
264 1 |a Chichester, West Sussex :  |b John Wiley & Sons, Inc.,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
520 |a Probability and Conditional Expectations bridges the gap between books on probability theory and statistics by providing the probabilistic concepts estimated and tested in analysis of variance, regression analysis, factor analysis, structural equation modeling, hierarchical linear models and analysis of qualitative data. The authors emphasize the theory of conditional expectations that is also fundamental to conditional independence and conditional distributions. Probability and Conditional Expectations -Presents a rigorous and detailed mathematical treatment of probability theory focusing on concepts that are fundamental to understand what we are estimating in applied statistics.-Explores the basics of random variables along with extensive coverage of measurable functions and integration.-Extensively treats conditional expectations also with respect to a conditional probability measure and the concept of conditional effect functions, which are crucial in the analysis of causal effects.-Is illustrated throughout with simple examples, numerous exercises and detailed solutions.-Provides website links to further resources including videos of courses delivered by the authors as well as R code exercises to help illustrate the theory presented throughout the book. 
504 |a Includes bibliographical references and indexes. 
505 0 |a Intro -- Probability and Conditional Expectation -- Contents -- Preface -- Why another book on probability? -- What is it about? -- For whom is it? -- Prerequisites -- Acknowledgements -- About the companion website -- Part I Measure-theoretical foundations of probability theory -- 1 Measure -- 1.1 Introductory examples -- 1.2 -Algebra and measurable space -- 1.2.1 -Algebra generated by a set system -- 1.2.2 -Algebra of Borel sets on -- 1.2.3 -Algebra on a Cartesian product -- 1.2.4)"Stable set systems that generate a -algebra -- 1.3 Measure and measure space -- 1.3.1 -Additivity and related properties -- 1.3.2 Other properties -- 1.4 Specific measures -- 1.4.1 Dirac measure and counting measure -- 1.4.2 Lebesgue measure -- 1.4.3 Other examples of a measure -- 1.4.4 Finite and -finite measures -- 1.4.5 Product measure -- 1.5 Continuity of a measure -- 1.6 Specifying a measure via a generating system -- 1.7 -Algebra that is trivial with respect to a measure -- 1.8 Proofs -- 2 Measurable mapping -- 2.1 Image and inverse image -- 2.2 Introductory examples -- 2.2.1 Example 1: Rectangles -- 2.2.2 Example 2: Flipping two coins -- 2.3 Measurable mapping -- 2.3.1 Measurable mapping -- 2.3.2 -Algebra generated by a mapping -- 2.3.3 Final -algebra -- 2.3.4 Multivariate mapping -- 2.3.5 Projection mapping -- 2.3.6 Measurability with respect to a mapping -- 2.4 Theorems on measurable mappings -- 2.4.1 Measurability of a composition -- 2.4.2 Theorems on measurable functions -- 2.5 Equivalence of two mappings with respect to a measure -- 2.6 Image measure -- 2.7 Proofs -- 3 Integral -- 3.1 Definition -- 3.1.1 Integral of a nonnegative step function -- 3.1.2 Integral of a nonnegative measurable function -- 3.1.3 Integral of a measurable function -- 3.2 Properties -- 3.2.1 Integral of -equivalent functions. 
505 8 |a 3.2.2 Integral with respect to a weighted sum of measures -- 3.2.3 Integral with respect to an image measure -- 3.2.4 Convergence theorems -- 3.3 Lebesgue and Riemann integral -- 3.4 Density -- 3.5 Absolute continuity and the Radon-Nikodym theorem -- 3.6 Integral with respect to a product measure -- 3.7 Proofs -- Part II Probability, Random Variable, and Its Distribution -- 4 Probability measure -- 4.1 Probability measure and probability space -- 4.1.1 Definition -- 4.1.2 Formal and substantive meaning of probabilistic terms -- 4.1.3 Properties of a probability measure -- 4.1.4 Examples -- 4.2 Conditional probability -- 4.2.1 Definition -- 4.2.2 Filtration and time order between events and sets of events -- 4.2.3 Multiplication rule -- 4.2.4 Examples -- 4.2.5 Theorem of total probability -- 4.2.6 Bayes' theorem -- 4.2.7 Conditional-probability measure -- 4.3 Independence -- 4.3.1 Independence of events -- 4.3.2 Independence of set systems -- 4.4 Conditional independence given an event -- 4.4.1 Conditional independence of events given an event -- 4.4.2 Conditional independence of set systems given an event -- 4.5 Proofs -- 5 Random variable, distribution, density, and distribution function -- 5.1 Random variable and its distribution -- 5.2 Equivalence of two random variables with respect to a probability measure -- 5.2.1 Identical and P-equivalent random variables -- 5.2.2 P-equivalence, PB-equivalence, and absolute continuity -- 5.3 Multivariate random variable -- 5.4 Independence of random variables -- 5.5 Probability function of a discrete random variable -- 5.6 Probability density with respect to a measure -- 5.6.1 General concepts and properties -- 5.6.2 Density of a discrete random variable -- 5.6.3 Density of a bivariate random variable -- 5.7 Uni- or multivariate real-valued random variable. 
505 8 |a 5.7.1 Distribution function of a univariate real-valued random variable -- 5.7.2 Distribution function of a multivariate real-valued random variable -- 5.7.3 Density of a continuous univariate real-valued random variable -- 5.7.4 Density of a continuous multivariate real-valued random variable -- 5.8 Proofs -- 6 Expectation, variance, and other moments -- 6.1 Expectation -- 6.1.1 Definition -- 6.1.2 Expectation of a discrete random variable -- 6.1.3 Computing the expectation using a density -- 6.1.4 Transformation theorem -- 6.1.5 Rules of computation -- 6.2 Moments, variance, and standard deviation -- 6.3 Proofs -- 7 Linear quasi-regression, covariance, and correlation -- 7.1 Linear quasi-regression -- 7.2 Covariance -- 7.3 Correlation -- 7.4 Expectation vector and covariance matrix -- 7.4.1 Random vector and random matrix -- 7.4.2 Expectation of a random vector and a random matrix -- 7.4.3 Covariance matrix of two multivariate random variables -- 7.5 Multiple linear quasi-regression -- 7.6 Proofs -- 8 Some distributions -- 8.1 Some distributions of discrete random variables -- 8.1.1 Discrete uniform distribution -- 8.1.2 Bernoulli distribution -- 8.1.3 Binomial distribution -- 8.1.4 Poisson distribution -- 8.1.5 Geometric distribution -- 8.2 Some distributions of continuous random variables -- 8.2.1 Continuous uniform distribution -- 8.2.2 Normal distribution -- 8.2.3 Multivariate normal distribution -- 8.2.4 Central 2-distribution -- 8.2.5 Central t-distribution -- 8.2.6 Central F-distribution -- 8.3 Proofs -- Part III Conditional expectation and regression -- 9 Conditional expectation value and discrete conditional expectation -- 9.1 Conditional expectation value -- 9.2 Transformation theorem -- 9.3 Other properties -- 9.4 Discrete conditional expectation -- 9.5 Discrete regression -- 9.6 Examples -- 9.7 Proofs -- 10 Conditional expectation. 
505 8 |a 10.1 Assumptions and definitions -- 10.2 Existence and uniqueness -- 10.2.1 Uniqueness with respect to a probability measure -- 10.2.2 A necessary and sufficient condition of uniqueness -- 10.2.3 Examples -- 10.3 Rules of computation and other properties -- 10.3.1 Rules of computation -- 10.3.2 Monotonicity -- 10.3.3 Convergence theorems -- 10.4 Factorization, regression, and conditional expectation value -- 10.4.1 Existence of a factorization -- 10.4.2 Conditional expectation and mean squared error -- 10.4.3 Uniqueness of a factorization -- 10.4.4 Conditional expectation value -- 10.5 Characterizing a conditional expectation by the joint distribution -- 10.6 Conditional mean independence -- 10.7 Proofs -- 11 Residual, conditional variance, and conditional covariance -- 11.1 Residual with respect to a conditional expectation -- 11.2 Coefficient of determination and multiple correlation -- 11.3 Conditional variance and covariance given a -algebra -- 11.4 Conditional variance and covariance given a value of a random variable -- 11.5 Properties of conditional variances and covariances -- 11.6 Partial correlation -- 11.7 Proofs -- 12 Linear regression -- 12.1 Basic ideas -- 12.2 Assumptions and definitions -- 12.3 Examples -- 12.4 Linear quasi-regression -- 12.5 Uniqueness and identification of regression coefficients -- 12.6 Linear regression -- 12.7 Parameterizations of a discrete conditional expectation -- 12.8 Invariance of regression coefficients -- 12.9 Proofs -- 13 Linear logistic regression -- 13.1 Logit transformation of a conditional probability -- 13.2 Linear logistic parameterization -- 13.3 A parameterization of a discrete conditional probability -- 13.4 Identification of coefficients of a linear logistic parameterization -- 13.5 Linear logistic regression and linear logit regression -- 13.6 Proofs. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Random variables. 
650 0 |a Measure theory. 
650 0 |a Measure algebras. 
650 0 |a Probabilities. 
650 6 |a Variables aléatoires. 
650 6 |a Théorie de la mesure. 
650 6 |a Algèbres de mesures. 
650 6 |a Probabilités. 
650 7 |a probability.  |2 aat 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Measure algebras  |2 fast 
650 7 |a Measure theory  |2 fast 
650 7 |a Probabilities  |2 fast 
650 7 |a Random variables  |2 fast 
650 7 |a Wahrscheinlichkeitsrechnung  |2 gnd 
650 7 |a Wahrscheinlichkeitstheorie  |2 gnd 
650 7 |a Statistik  |2 gnd 
700 1 |a Nagel, Werner. 
758 |i has work:  |a Probability and conditional expectation (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYhkdKxmX4MG9yy3QK9j3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Steyer, Rolf, 1950-  |t Probability and conditional expectation.  |d Chichester, West Sussex : John Wiley & Sons, Inc., 2017  |z 9781119243526  |w (DLC) 2016025874  |w (OCoLC)952195789 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4813141  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32562287 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32485093 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4813141 
938 |a EBSCOhost  |b EBSC  |n 1472832 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37692807 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00704810 
938 |a YBP Library Services  |b YANK  |n 13519037 
938 |a YBP Library Services  |b YANK  |n 13780819 
994 |a 92  |b IZTAP