Cargando…

Handbook of Composites from Renewable Materials, Physico-Chemical and Mechanical Characterization.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Thakur, Vijay Kumar
Otros Autores: Thakur, Manju Kumari, Kessler, Michael R. (Michael Richard), 1974-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Somerset : John Wiley & Sons, Incorporated, 2016.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page; Copyright Page ; Dedication; Contents; Preface; 1 Structural and Biodegradation Characterization of Supramolecular PCL/HAp Nanocomposites for Application in Tissue Engineering; 1.1 Introduction; 1.1.1 Hydroxyapatite: A Bioceramic of Renewable Resource; 1.2 Biomedical Applications of HAp; 1.3 Effect of HAp Particles on Biodegradation of PCL/HAp Composites; 1.4 Polycaprolactone; 1.5 Supramolecular Polymers and Supramolecular PCL; 1.6 Supramolecular Composites: PCL (UPy)2/HApUPy Composites; 1.6.1 Biodegradation Study of the PCL (UPy)2/HApUPy Composites.
  • 1.6.1.1 In Vitro Degradation Study1.6.1.2 Water Uptake and Weight Loss; 1.6.1.3 Chemical Properties; 1.6.1.4 Thermal and Dynamic Mechanical Properties; 1.7 PCL(UPy)2/HApUPy Nanocomposites; 1.7.1 Biodegradation Study of PCL(UPy)2/HApUPy Nanocomposites; References; 2 Different Characterization of Solid Biofillers Based Agricultural Waste Materials; 2.1 Introduction; 2.2 Examples on Agricultural Waste Materials; 2.2.1 Rice Husk; 2.2.2 Olive Husk Powder; 2.2.3 Cellulose; 2.3 The Main Polymorphs of Cellulose; 2.4 Modification Methods of Agro-Biomass; 2.4.1 Physical Methods.
  • 2.4.1.1 Conventional Drying Methods2.4.1.2 Microwave Heating; 2.4.2 Chemical Methods; 2.4.3 Cross-linking of the Cellulose Macromolecules; 2.4.3.1 Reaction with Formaldehyde; 2.4.3.2 Acetylation; 2.4.3.3 Polyisocyanates Coupling Agents; 2.4.3.4 Silane Coupling Agents; 2.5 Properties of Thermoplastics Reinforced with Untreated Wood Fillers; 2.6 Production of Nanocellulose; 2.6.1 Cellulose Whiskers; 2.6.2 Microfibrillated Cellulose; 2.6.3 Properties of Cellulose-Based Nanocomposites; 2.6.3.1 Mechanical Properties; 2.6.3.2 Thermal Properties; 2.6.3.3 Barrier Properties.
  • 2.7 Processing of Wood Thermoplastic Composites2.8 Conclusion; References; 3 Poly (ethylene-terephthalate) Reinforced with Hemp Fibers: Elaboration, Characterization, and Potential Applications; 3.1 General Introduction to Biocomposite Materials; 3.2 PET-Hemp Fiber Composites; 3.2.1 Potential; 3.2.2 Challenges; 3.3 Methods of Elaboration and Characterization of PET-Hemp Fiber Composites; 3.3.1 Elaboration; 3.3.2 Melt Processing; 3.3.3 Characterization; 3.4 Properties of PET-Hemp Fiber Composites; 3.4.1 Mechanical Properties; 3.4.2 Thermostability; 3.4.3 Structural Properties.
  • 3.4.4 Heat Capacities3.4.5 Relaxation Properties; 3.5 Applications of PET-Hemp Fiber Composites; 3.5.1 Applications Requiring Small Deformations; 3.5.2 Applications Requiring Large Deformations; 3.5.2.1 The Constitutive Equations; 3.5.2.2 The Free-forming Pressure Load; 3.5.2.3 The Simulation Assumptions; 3.5.2.4 The Numerical Free Inflation of PET-Hemp Fibers Composite Discs; 3.6 Conclusion and Future Prospects; References; 4 Poly(Lactic Acid) Thermoplastic Composites from Renewable Materials; 4.1 Introduction; 4.2 Poly(Lactic Acid) Production, Properties, and Processing; 4.2.1 Lactide.