Cargando…

Handbook for Data Scientists.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Cady, Field
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Somerset : John Wiley & Sons, Incorporated, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn970636214
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 170128s2017 xx of 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OCLCQ  |d MERUC  |d UUM  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d SGP  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 970611178  |a 970807509  |a 971222732  |a 971357825  |a 971520423 
020 |a 9781119092933 
020 |a 1119092930 
020 |z 1119092949 
020 |z 9781119092940 
029 1 |a AU@  |b 000065431102 
035 |a (OCoLC)970636214  |z (OCoLC)970611178  |z (OCoLC)970807509  |z (OCoLC)971222732  |z (OCoLC)971357825  |z (OCoLC)971520423 
050 4 |a QA76.9.D32.C33 2017 
082 0 4 |a 005.74  |2 23 
049 |a UAMI 
100 1 |a Cady, Field. 
245 1 0 |a Handbook for Data Scientists. 
260 |a Somerset :  |b John Wiley & Sons, Incorporated,  |c 2017. 
300 |a 1 online resource (417 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Dedication; Contents; Preface; Chapter 1 Introduction: Becoming a Unicorn; 1.1 Aren't Data Scientists Just Overpaid Statisticians?; 1.2 How Is This Book Organized?; 1.3 How toÜse This Book?; 1.4 Why Is It All inÈPython"! Anyway?; 1.5 Example Code andÈDatasets; 1.6 Parting Words; Part 1 The Stuff You'll Always Use; Chapter 2 The Data Science Road Map; 2.1 Frame theÈProblem; 2.2 Understand theÈData: Basic Questions; 2.3 Understand theÈData: Data Wrangling; 2.4 Understand theÈData: Exploratory Analysis; 2.5 Extract Features; 2.6 Model; 2.7 Present Results. 
505 8 |a 2.8 Deploy Code2.9 Iterating; 2.10 Glossary; Chapter 3 Programming Languages; 3.1 Why Use aÈProgramming Language? WhatÄreẗheÖther Options?; 3.2 A Survey ofÈProgramming Languages forÈDataÈScience; 3.3 Python Crash Course; 3.4 Strings; 3.5 Defining Functions; 3.6 Python's Technical Libraries; 3.7 Other Python Resources; 3.8 Further Reading; 3.9 Glossary; Interlude: My Personal Toolkit; Chapter 4 Data Munging: String Manipulation, Regular Expressions, and Data Cleaning; 4.1 The Worst Dataset inẗheẄorld; 4.2 How toÏdentify Pathologies; 4.3 Problems withÈData Content; 4.4 Formatting Issues. 
505 8 |a 4.5 Example Formatting Script4.6 Regular Expressions; 4.7 Life inẗheÈTrenches; 4.8 Glossary; Chapter 5 Visualizations andÈSimple Metrics; 5.1 A Note onÈPython's Visualization Tools; 5.2 Example Code; 5.3 Pie Charts; 5.4 Bar Charts; 5.5 Histograms; 5.6 Means, Standard Deviations, Medians, andÈQuantiles; 5.7 Boxplots; 5.8 Scatterplots; 5.9 Scatterplots withÈLogarithmic Axes; 5.10 Scatter Matrices; 5.11 Heatmaps; 5.12 Correlations; 5.13 Anscombe's Quartet andẗheÈLimits ofÈNumbers; 5.14 Time Series; 5.15 Further Reading; 5.16 Glossary; Chapter 6 Machine Learning Overview; 6.1 Historical Context. 
505 8 |a 6.2 Supervised versus Unsupervised6.3 Training Data, Testing Data, andẗheÈGreat Boogeyman ofÖverfitting; 6.4 Further Reading; 6.5 Glossary; Chapter 7 Interlude: Feature Extraction Ideas; 7.1 Standard Features; 7.2 Features That Involve Grouping; 7.3 Preview ofÈMore Sophisticated Features; 7.4 Defining theÈFeature YouẄant toÈPredict; Chapter 8 Machine Learning Classification; 8.1 What Is aÈClassifier, andẄhat Can YouÈDo withÏt?; 8.2 A Few Practical Concerns; 8.3 Binary versus Multiclass; 8.4 Example Script; 8.5 Specific Classifiers; 8.6 Evaluating Classifiers. 
505 8 |a 8.7 Selecting Classification Cutoffs8.8 Further Reading; 8.9 Glossary; Chapter 9 Technical Communication andÈDocumentation; 9.1 Several Guiding Principles; 9.2 Slide Decks; 9.3 Written Reports; 9.4 Speaking: What Has Worked forÈMe; 9.5 Code Documentation; 9.6 Further Reading; 9.7 Glossary; Part II Stuff You Still Need to Know; Chapter 10 Unsupervised Learning: Clustering andÈDimensionality Reduction; 10.1 The Curse ofÈDimensionality; 10.2 Example: Eigenfaces forÈDimensionality Reduction; 10.3 Principal Component Analysis andÈFactor Analysis; 10.4 Skree Plots andÜnderstanding Dimensionality. 
500 |a 10.5 Factor Analysis. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Databases  |v Handbooks, manuals, etc. 
650 7 |a Databases  |2 fast 
655 7 |a Handbooks and manuals  |2 fast 
758 |i has work:  |a Handbook for Data Scientists (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3JWpGBMhHVgXYxH6CdHfq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Cady, Field.  |t Handbook for Data Scientists.  |d Somerset : John Wiley & Sons, Incorporated, Ã2017  |z 9781119092940 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4790656  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4790656 
938 |a YBP Library Services  |b YANK  |n 13399387 
938 |a YBP Library Services  |b YANK  |n 13408810 
994 |a 92  |b IZTAP