|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn970006994 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m eo d |
007 |
cr cn||||m|||a |
008 |
170125t20172017sz a fob 001 0 eng d |
040 |
|
|
|a CaBNVSL
|b eng
|e rda
|e pn
|c J2I
|d J2I
|d EBLCP
|d N$T
|d UAB
|d UIU
|d WAU
|d YDX
|d OCLCF
|d COO
|d BUF
|d CAUOI
|d JNA
|d CEF
|d RRP
|d U3W
|d ESU
|d OTZ
|d OL$
|d OCLCQ
|d LVT
|d OCLCO
|d UKAHL
|d OCLCO
|d GW5XE
|d OCLCQ
|d OCLCO
|d OCLCL
|d OCLCQ
|
019 |
|
|
|a 967559831
|a 967889636
|a 1229468175
|
020 |
|
|
|a 9781627059367
|q (ebook)
|
020 |
|
|
|a 1627059369
|q (ebook)
|
020 |
|
|
|z 9781627059800
|q (print)
|
020 |
|
|
|a 1627059806
|
020 |
|
|
|a 9781627059800
|
020 |
|
|
|a 9783031793769
|q (electronic bk.)
|
020 |
|
|
|a 3031793765
|q (electronic bk.)
|
024 |
7 |
|
|a 10.2200/S00747ED3V01Y201616ENG027
|2 doi
|
024 |
7 |
|
|a 10.1007/978-3-031-79376-9
|2 doi
|
035 |
|
|
|a (OCoLC)970006994
|z (OCoLC)967559831
|z (OCoLC)967889636
|z (OCoLC)1229468175
|
050 |
|
4 |
|a T57.825
|b .C744 2017
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Creese, Robert C.,
|d 1941-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjx4CVj69tbjkTBjYMTpKd
|
240 |
1 |
0 |
|a Geometric programming for design and cost optimization
|
245 |
1 |
0 |
|a Geometric programming for design equation development and cost/profit optimization :
|b (with illustrative case study problems and solutions) /
|c Robert C. Creese, West Virginia University.
|
250 |
|
|
|a Third edition.
|
264 |
|
1 |
|a Cham, Switzerland :
|b Springer,
|c [2017]
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource (xvi, 194 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Synthesis lectures on engineering,
|x 1939-523X ;
|v #27
|
588 |
0 |
|
|a Online resource; title from PDF title page (Morgan & Claypool, viewed on January 24, 2017).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Part I. Introduction, history, and theoretical fundamentals of geometric programming -- 1. Introduction -- 1.1 Optimization and geometric programming -- 1.1.1 Optimization -- 1.1.2 Geometric programming -- 1.2 Evaluative questions -- 1.3 References -- 2. Brief history of geometric programming -- 2.1 Pioneers of geometric programming -- 2.2 Evaluative questions -- 2.3 References -- 3. Theoretical fundamentals -- 3.1 Primal and dual formulations -- 3.2 Evaluative questions -- 3.3 References
|
505 |
8 |
|
|a Part II. Geometric programming cost minimization applications with zero degrees of difficulty -- 4. The optimal box design case study -- 4.1 Introduction -- 4.2 The optimal box design problem -- 4.3 Evaluative questions -- 5. Trash can case study -- 5.1 Introduction -- 5.2 The optimal trash can design problem -- 5.3 Evaluative questions -- 5.4 References -- 6. The building area design case study -- 6.1 Introduction -- 6.2 The building area design problem -- 6.3 Problem solution -- 6.4 Modified building area design problem -- 6.5 Fixed room height area design problem -- 6.6 Evaluative questions -- 6.7 References -- 7. The open cargo shipping box case study -- 7.1 Problem statement and general solution -- 7.2 Evaluative questions -- 7.3 References -- 8. Metal casting cylindrical side riser case study -- 8.1 Introduction -- 8.2 Problem formulation and general solution -- 8.3 Cylindrical side riser example -- 8.4 Evaluative questions -- 8.5 References -- 9. Inventory model case study -- 9.1 Problem statement and general solution -- 9.2 Inventory example problem -- 9.3 Evaluative questions -- 9.4 References -- 10. Process furnace design case study -- 10.1 Problem statement and solution -- 10.2 Conclusions -- 10.3 Evaluative questions -- 10.4 References -- 11. The gas transmission pipeline case study -- 11.1 Problem statement and solution -- 11.2 Evaluative questions -- 11.3 References -- 12. Material removal/metal cutting economics case study -- 12.1 Introduction -- 12.2 Problem formulation -- 12.3 Evaluative questions -- 12.4 References -- 13. Construction building sector cost minimization case study -- 13.1 Introduction -- 13.2 Model development -- 13.3 Model results and validation -- 13.4 Conclusions -- 13.5 Evaluative questions -- 13.6 References
|
505 |
8 |
|
|a Part III. Geometric programming profit maximization applications with zero degrees of difficulty -- 14. Production function profit maximization case study -- 14.1 Profit maximization with geometric programming -- 14.2 Profit maximization of the production function case study -- 14.3 Evaluative questions -- 14.4 References -- 15. Product mix profit maximization case study -- 15.1 Profit maximization using the Cobb-Douglas production function -- 15.2 Evaluative questions -- 15.3 References -- 16. Chemical plant product profitability case study -- 16.1 Model formulation -- 16.2 Primal and dual solutions -- 16.3 Evaluative questions -- 16.4 References
|
505 |
8 |
|
|a Part IV. Geometric programming applications with positive degrees of difficulty -- 17. Journal bearing design case study -- 17.1 Issues with positive degrees of difficulty problems -- 17.2 Journal bearing case study -- 17.3 Primal and dual formulation of journal bearing design -- 17.4 Dimensional analysis technique for additional equation -- 17.5 Evaluative questions -- 17.6 References -- 18. Multistory building design with a variable number of floors case study -- 18.1 Introduction -- 18.2 Problem formulation -- 18.3 Evaluative questions -- 18.4 References -- 19. Metal casting cylindrical side riser with hemispherical top design case study -- 19.1 Introduction -- 19.2 Problem formulation -- 19.3 Dimensional analysis technique for additional two equations -- 19.4 Evaluative questions -- 19.5 References -- 20. Liquefied petroleum gas (LPG) cylinders case study -- 20.1 Introduction -- 20.2 Problem formulation -- 20.3 Dimensional analysis technique for additional equation -- 20.4 Evaluative questions -- 20.5 References -- 21. Material removal/metal cutting economics with two constraints case study -- 21.1 Introduction -- 21.2 Problem formulation -- 21.3 Problem solution -- 21.4 Example problem -- 21.5 Evaluative questions -- 21.6 References -- 22. The open cargo shipping box with skids case study -- 22.1 Introduction -- 22.2 Primal and dual problem formulation -- 22.3 Constrained derivative approach -- 22.4 Dimensional analysis approach for additional equation -- 22.5 Condensation of terms approach -- 22.6 Evaluative questions -- 22.7 References -- 23. Profit maximization considering decreasing cost functions of inventory policy case study -- 23.1 Introduction -- 23.2 Model formulation -- 23.3 Inventory example problem with scaling constants for price and cost -- 23.4 Transformed dual approach -- 23.5 Evaluative questions -- 23.6 References
|
505 |
8 |
|
|a Part V. Summary, future directions, theses and dissertations on geometric programming -- 24. Summary and future directions -- 24.1 Summary -- 24.2 Future directions -- 24.3 Development of new design relationships -- 25. Theses and dissertations on geometric programming -- 25.1 Introduction -- 25.2 Lists of M.S. theses and Ph. D. dissertations -- Author's biography -- Index.
|
520 |
3 |
|
|a Geometric Programming is used for cost minimization, profit maximization, obtaining cost ratios, and the development of generalized design equations for the primal variables. The early pioneers of geometric programming--Zener, Duffin, Peterson, Beightler, Wilde, and Phillips-- played important roles in its development. Five new case studies have been added to the third edition. There are five major sections: (1) Introduction, History and Theoretical Fundamentals; (2) Cost Minimization Applications with Zero Degrees of Difficulty; (3) Profit Maximization Applications with Zero Degrees of Difficulty; (4) Applications with Positive Degrees of Difficulty; and (5) Summary, Future Directions, and Geometric Programming Theses & Dissertations Titles. The various solution techniques presented are the constrained derivative approach, condensation of terms approach, dimensional analysis approach, and transformed dual approach. A primary goal of this work is to have readers develop more case studies and new solution techniques to further the application of geometric programming.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometric programming
|v Case studies.
|
650 |
|
6 |
|a Programmation géométrique
|v Études de cas.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Geometric programming
|2 fast
|
653 |
|
|
|a design optimization
|
653 |
|
|
|a generalized design relationships
|
653 |
|
|
|a cost optimization
|
653 |
|
|
|a profit maximization
|
653 |
|
|
|a cost ratios
|
653 |
|
|
|a constrained derivative
|
653 |
|
|
|a dimensional analysis
|
653 |
|
|
|a condensation of terms
|
653 |
|
|
|a transformed dual
|
653 |
|
|
|a posynominials
|
655 |
|
7 |
|a Case studies
|2 fast
|
758 |
|
|
|i has work:
|a Geometric programming for design and cost optimization (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGCHdVJ6mJW8X9HmQwp7H3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9781627059800
|
830 |
|
0 |
|a Synthesis lectures on engineering ;
|v #27.
|x 1939-5221
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4774129
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH38017612
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4774129
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1445456
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13319620
|
994 |
|
|
|a 92
|b IZTAP
|