Cargando…

Geometric programming for design equation development and cost/profit optimization : (with illustrative case study problems and solutions) /

Geometric Programming is used for cost minimization, profit maximization, obtaining cost ratios, and the development of generalized design equations for the primal variables. The early pioneers of geometric programming--Zener, Duffin, Peterson, Beightler, Wilde, and Phillips-- played important roles...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Creese, Robert C., 1941- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham, Switzerland : Springer, [2017]
Edición:Third edition.
Colección:Synthesis lectures on engineering ; #27.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn970006994
003 OCoLC
005 20240329122006.0
006 m eo d
007 cr cn||||m|||a
008 170125t20172017sz a fob 001 0 eng d
040 |a CaBNVSL  |b eng  |e rda  |e pn  |c J2I  |d J2I  |d EBLCP  |d N$T  |d UAB  |d UIU  |d WAU  |d YDX  |d OCLCF  |d COO  |d BUF  |d CAUOI  |d JNA  |d CEF  |d RRP  |d U3W  |d ESU  |d OTZ  |d OL$  |d OCLCQ  |d LVT  |d OCLCO  |d UKAHL  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 967559831  |a 967889636  |a 1229468175 
020 |a 9781627059367  |q (ebook) 
020 |a 1627059369  |q (ebook) 
020 |z 9781627059800  |q (print) 
020 |a 1627059806 
020 |a 9781627059800 
020 |a 9783031793769  |q (electronic bk.) 
020 |a 3031793765  |q (electronic bk.) 
024 7 |a 10.2200/S00747ED3V01Y201616ENG027  |2 doi 
024 7 |a 10.1007/978-3-031-79376-9  |2 doi 
035 |a (OCoLC)970006994  |z (OCoLC)967559831  |z (OCoLC)967889636  |z (OCoLC)1229468175 
050 4 |a T57.825  |b .C744 2017 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
049 |a UAMI 
100 1 |a Creese, Robert C.,  |d 1941-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjx4CVj69tbjkTBjYMTpKd 
240 1 0 |a Geometric programming for design and cost optimization 
245 1 0 |a Geometric programming for design equation development and cost/profit optimization :  |b (with illustrative case study problems and solutions) /  |c Robert C. Creese, West Virginia University. 
250 |a Third edition. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2017] 
264 4 |c ©2017 
300 |a 1 online resource (xvi, 194 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Synthesis lectures on engineering,  |x 1939-523X ;  |v #27 
588 0 |a Online resource; title from PDF title page (Morgan & Claypool, viewed on January 24, 2017). 
504 |a Includes bibliographical references and index. 
505 0 |a Part I. Introduction, history, and theoretical fundamentals of geometric programming -- 1. Introduction -- 1.1 Optimization and geometric programming -- 1.1.1 Optimization -- 1.1.2 Geometric programming -- 1.2 Evaluative questions -- 1.3 References -- 2. Brief history of geometric programming -- 2.1 Pioneers of geometric programming -- 2.2 Evaluative questions -- 2.3 References -- 3. Theoretical fundamentals -- 3.1 Primal and dual formulations -- 3.2 Evaluative questions -- 3.3 References 
505 8 |a Part II. Geometric programming cost minimization applications with zero degrees of difficulty -- 4. The optimal box design case study -- 4.1 Introduction -- 4.2 The optimal box design problem -- 4.3 Evaluative questions -- 5. Trash can case study -- 5.1 Introduction -- 5.2 The optimal trash can design problem -- 5.3 Evaluative questions -- 5.4 References -- 6. The building area design case study -- 6.1 Introduction -- 6.2 The building area design problem -- 6.3 Problem solution -- 6.4 Modified building area design problem -- 6.5 Fixed room height area design problem -- 6.6 Evaluative questions -- 6.7 References -- 7. The open cargo shipping box case study -- 7.1 Problem statement and general solution -- 7.2 Evaluative questions -- 7.3 References -- 8. Metal casting cylindrical side riser case study -- 8.1 Introduction -- 8.2 Problem formulation and general solution -- 8.3 Cylindrical side riser example -- 8.4 Evaluative questions -- 8.5 References -- 9. Inventory model case study -- 9.1 Problem statement and general solution -- 9.2 Inventory example problem -- 9.3 Evaluative questions -- 9.4 References -- 10. Process furnace design case study -- 10.1 Problem statement and solution -- 10.2 Conclusions -- 10.3 Evaluative questions -- 10.4 References -- 11. The gas transmission pipeline case study -- 11.1 Problem statement and solution -- 11.2 Evaluative questions -- 11.3 References -- 12. Material removal/metal cutting economics case study -- 12.1 Introduction -- 12.2 Problem formulation -- 12.3 Evaluative questions -- 12.4 References -- 13. Construction building sector cost minimization case study -- 13.1 Introduction -- 13.2 Model development -- 13.3 Model results and validation -- 13.4 Conclusions -- 13.5 Evaluative questions -- 13.6 References 
505 8 |a Part III. Geometric programming profit maximization applications with zero degrees of difficulty -- 14. Production function profit maximization case study -- 14.1 Profit maximization with geometric programming -- 14.2 Profit maximization of the production function case study -- 14.3 Evaluative questions -- 14.4 References -- 15. Product mix profit maximization case study -- 15.1 Profit maximization using the Cobb-Douglas production function -- 15.2 Evaluative questions -- 15.3 References -- 16. Chemical plant product profitability case study -- 16.1 Model formulation -- 16.2 Primal and dual solutions -- 16.3 Evaluative questions -- 16.4 References 
505 8 |a Part IV. Geometric programming applications with positive degrees of difficulty -- 17. Journal bearing design case study -- 17.1 Issues with positive degrees of difficulty problems -- 17.2 Journal bearing case study -- 17.3 Primal and dual formulation of journal bearing design -- 17.4 Dimensional analysis technique for additional equation -- 17.5 Evaluative questions -- 17.6 References -- 18. Multistory building design with a variable number of floors case study -- 18.1 Introduction -- 18.2 Problem formulation -- 18.3 Evaluative questions -- 18.4 References -- 19. Metal casting cylindrical side riser with hemispherical top design case study -- 19.1 Introduction -- 19.2 Problem formulation -- 19.3 Dimensional analysis technique for additional two equations -- 19.4 Evaluative questions -- 19.5 References -- 20. Liquefied petroleum gas (LPG) cylinders case study -- 20.1 Introduction -- 20.2 Problem formulation -- 20.3 Dimensional analysis technique for additional equation -- 20.4 Evaluative questions -- 20.5 References -- 21. Material removal/metal cutting economics with two constraints case study -- 21.1 Introduction -- 21.2 Problem formulation -- 21.3 Problem solution -- 21.4 Example problem -- 21.5 Evaluative questions -- 21.6 References -- 22. The open cargo shipping box with skids case study -- 22.1 Introduction -- 22.2 Primal and dual problem formulation -- 22.3 Constrained derivative approach -- 22.4 Dimensional analysis approach for additional equation -- 22.5 Condensation of terms approach -- 22.6 Evaluative questions -- 22.7 References -- 23. Profit maximization considering decreasing cost functions of inventory policy case study -- 23.1 Introduction -- 23.2 Model formulation -- 23.3 Inventory example problem with scaling constants for price and cost -- 23.4 Transformed dual approach -- 23.5 Evaluative questions -- 23.6 References 
505 8 |a Part V. Summary, future directions, theses and dissertations on geometric programming -- 24. Summary and future directions -- 24.1 Summary -- 24.2 Future directions -- 24.3 Development of new design relationships -- 25. Theses and dissertations on geometric programming -- 25.1 Introduction -- 25.2 Lists of M.S. theses and Ph. D. dissertations -- Author's biography -- Index. 
520 3 |a Geometric Programming is used for cost minimization, profit maximization, obtaining cost ratios, and the development of generalized design equations for the primal variables. The early pioneers of geometric programming--Zener, Duffin, Peterson, Beightler, Wilde, and Phillips-- played important roles in its development. Five new case studies have been added to the third edition. There are five major sections: (1) Introduction, History and Theoretical Fundamentals; (2) Cost Minimization Applications with Zero Degrees of Difficulty; (3) Profit Maximization Applications with Zero Degrees of Difficulty; (4) Applications with Positive Degrees of Difficulty; and (5) Summary, Future Directions, and Geometric Programming Theses & Dissertations Titles. The various solution techniques presented are the constrained derivative approach, condensation of terms approach, dimensional analysis approach, and transformed dual approach. A primary goal of this work is to have readers develop more case studies and new solution techniques to further the application of geometric programming. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometric programming  |v Case studies. 
650 6 |a Programmation géométrique  |v Études de cas. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Geometric programming  |2 fast 
653 |a design optimization 
653 |a generalized design relationships 
653 |a cost optimization 
653 |a profit maximization 
653 |a cost ratios 
653 |a constrained derivative 
653 |a dimensional analysis 
653 |a condensation of terms 
653 |a transformed dual 
653 |a posynominials 
655 7 |a Case studies  |2 fast 
758 |i has work:  |a Geometric programming for design and cost optimization (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGCHdVJ6mJW8X9HmQwp7H3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781627059800 
830 0 |a Synthesis lectures on engineering ;  |v #27.  |x 1939-5221 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4774129  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38017612 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4774129 
938 |a EBSCOhost  |b EBSC  |n 1445456 
938 |a YBP Library Services  |b YANK  |n 13319620 
994 |a 92  |b IZTAP