Cargando…

Oseledec multiplicative ergodic theorem for laminations /

"Given a -dimensional lamination endowed with a Riemannian metric, we introduce the notion of a multiplicative cocycle of rank where and are arbitrary positive integers. The holonomy cocycle of a foliation and its exterior powers as well as its tensor powers provide examples of multiplicative c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nguyên, Viêt-Anh, 1974- (Autor)
Formato: Documento de Gobierno Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1164.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn968214336
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 170112t20172016riu ob 001 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d LLB  |d OCLCF  |d COO  |d COD  |d OCLCA  |d EBLCP  |d IDB  |d YDX  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 993767991 
020 |a 9781470436377  |q (online) 
020 |a 147043637X  |q (online) 
020 |z 9781470422530  |q (alk. paper) 
020 |z 1470422530  |q (alk. paper) 
029 1 |a AU@  |b 000062339064 
029 1 |a AU@  |b 000069423737 
035 |a (OCoLC)968214336  |z (OCoLC)993767991 
050 4 |a QA313  |b .N48 2017 
082 0 4 |a 515/.48  |2 23 
086 0 |a - 
049 |a UAMI 
100 1 |a Nguyên, Viêt-Anh,  |d 1974-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjM8mCkBrPTHGQqRMjkDD3 
245 1 0 |a Oseledec multiplicative ergodic theorem for laminations /  |c Viêt-Anh Nguyên. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2016 
300 |a 1 online resource (ix, 174 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 246, number 1164 
588 0 |a Print version record. 
500 |a "Volume 246, Number 1164 (third of 6 numbers), March 2017." 
504 |a Includes bibliographical references (pages 165-166) and index. 
505 0 0 |g Acknowledgement --  |g Chapter 1. Introduction --  |g Chapter 2. Background --  |g Chapter 3. Statement of the main results --  |g Chapter 4. Preparatory results --  |g Chapter 5.  |t Leafwise Lyapunov exponents --  |g Chapter 6.  |t Splitting subbundles --  |g Chapter 7.  |t Lyapunov forward filtrations --  |g Chapter 8.  |t Lyapunov backward filtrations --  |g Chapter 9. Proof of the main results --  |g Appendix A.  |t Measure theory for sample-path spaces --  |g Appendix B.  |t Harmonic measure theory and ergodic theory for sample-path spaces. 
520 |a "Given a -dimensional lamination endowed with a Riemannian metric, we introduce the notion of a multiplicative cocycle of rank where and are arbitrary positive integers. The holonomy cocycle of a foliation and its exterior powers as well as its tensor powers provide examples of multiplicative cocycles. Next, we define the Lyapunov exponents of such a cocycle with respect to a harmonic probability measure directed by the lamination. We also prove an Oseledec multiplicative ergodic theorem in this context. This theorem implies the existence of an Oseledec decomposition almost everywhere which is holonomy invariant. Moreover, in the case of differentiable cocycles we establish effective integral estimates for the Lyapunov exponents. These results find applications in the geometric and dynamical theory of laminations. They are also applicable to (not necessarily closed) laminations with singularities. Interesting holonomy properties of a generic leaf of a foliation are obtained. The main ingredients of our method are the theory of Brownian motion, the analysis of the heat diffusions on Riemannian manifolds, the ergodic theory in discrete dynamics and a geometric study of laminations."--Publisher website 
546 |a Text in English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Ergodic theory. 
650 0 |a Topological spaces. 
650 0 |a Measure theory. 
650 0 |a Foliations (Mathematics) 
650 6 |a Théorie ergodique. 
650 6 |a Espaces topologiques. 
650 6 |a Théorie de la mesure. 
650 6 |a Feuilletages (Mathématiques) 
650 7 |a Ergodic theory  |2 fast 
650 7 |a Foliations (Mathematics)  |2 fast 
650 7 |a Measure theory  |2 fast 
650 7 |a Topological spaces  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Oseledec multiplicative ergodic theorem for laminations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG9GjhJKmr7C4j4XJ8TXbb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Nguyên, Viêt-Anh, 1974-  |t Oseledec multiplicative ergodic theorem for laminations  |z 9781470422530  |w (DLC) 2016055233  |w (OCoLC)965754141 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1164. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908280  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4908280 
938 |a YBP Library Services  |b YANK  |n 14683152 
994 |a 92  |b IZTAP