Cargando…

On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps /

"Using Dwork's theory, we prove a broad generalization of his famous -adic formal congruences theorem. This enables us to prove certain p-adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold for any prime number p and not only for al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Delaygue, E. (Eric), 1983- (Autor), Rivoal, T. (Tanguy), 1972- (Autor), Roques, J. (Julien), 1980- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2017.
Colección:Memoirs of the American Mathematical Society ; no. 1163.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn968205459
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 170111t20172016riu ob 000 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d UIU  |d LLB  |d OCLCF  |d COO  |d COD  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d N$T  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781470436353  |q (electronic bk.) 
020 |a 1470436353  |q (electronic bk.) 
020 |z 9781470423001  |q (alk. paper) 
020 |z 1470423006  |q (alk. paper) 
029 1 |a AU@  |b 000062338955 
029 1 |a AU@  |b 000069670097 
035 |a (OCoLC)968205459 
050 4 |a QA564  |b .D4494 2017 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.7/4  |2 23 
049 |a UAMI 
100 1 |a Delaygue, E.  |q (Eric),  |d 1983-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjDfHd4XTYKJKvvf9XymVC 
245 1 0 |a On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps /  |c E. Delaygue, T. Rivoal, J. Roques. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2017. 
264 4 |c ©2016 
300 |a 1 online resource (v, 94 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 246, number 1163 
588 0 |a Print version record. 
500 |a "Volume 246, Number 1163 (second of 6 numbers), March 2017." 
504 |a Includes bibliographical references (pages 93-94). 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Statements of the main results  |t Chapter 3. Structure of the paper  |t Chapter 4. Comments on the main results, comparison with previous results and open questions  |t Chapter 5. The $p$-adic valuation of Pochhammer symbols  |t Chapter 6. Proof of Theorem 4  |t Chapter 7. Formal congruences  |t Chapter 8. Proof of Theorem 6  |t Chapter 9. Proof of Theorem 9  |t Chapter 10. Proof of Theorem 12  |t Chapter 11. Proof of Theorem 8  |t Chapter 12. Proof of Theorem 10  |t Chapter 13. Proof of Corollary 14. 
520 3 |a "Using Dwork's theory, we prove a broad generalization of his famous -adic formal congruences theorem. This enables us to prove certain p-adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold for any prime number p and not only for almost all primes. Furthermore, using Christol's functions, we provide an explicit formula for the "Eisenstein constant" of any hypergeometric series with rational parameters. As an application of these results, we obtain an arithmetic statement "on average" of a new type concerning the integrality of Taylor coefficients of the associated mirror maps. It contains all the similar univariate integrality results in the literature, with the exception of certain refinements that hold only in very particular cases."--Publisher website 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Algebraic. 
650 0 |a p-adic analysis. 
650 0 |a Congruences (Geometry) 
650 0 |a Mirror symmetry. 
650 6 |a Géométrie algébrique. 
650 6 |a Analyse p-adique. 
650 6 |a Congruences (Géométrie) 
650 6 |a Symétrie du miroir. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Congruences (Geometry)  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Mirror symmetry  |2 fast 
650 7 |a p-adic analysis  |2 fast 
700 1 |a Rivoal, T.  |q (Tanguy),  |d 1972-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjGqTcKFHvTdRvrcrgDXV3 
700 1 |a Roques, J.  |q (Julien),  |d 1980-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjwHBPMTPgxMyJqPDy8JrC 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGXfV3VVYmMhdMJy7pgHqP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Delaygue, E. (Eric), 1983-  |t On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps  |z 9781470423001  |w (DLC) 2016055098  |w (OCoLC)965446423 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1163. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908279  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37445063 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4908279 
938 |a EBSCOhost  |b EBSC  |n 1550133 
938 |a YBP Library Services  |b YANK  |n 14683151 
994 |a 92  |b IZTAP