|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn968205230 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
170111t20172016riua ob 001 0 eng d |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d UIU
|d LLB
|d OCLCF
|d COO
|d COD
|d OCLCA
|d EBLCP
|d IDB
|d YDX
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 993761296
|a 1002902825
|
020 |
|
|
|a 9781470436339
|q (online)
|
020 |
|
|
|a 1470436337
|q (online)
|
020 |
|
|
|z 9781470423087
|q (alk. paper)
|
020 |
|
|
|z 1470423081
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062338834
|
029 |
1 |
|
|a AU@
|b 000069670098
|
035 |
|
|
|a (OCoLC)968205230
|z (OCoLC)993761296
|z (OCoLC)1002902825
|
050 |
|
4 |
|a QA387
|b .G7245 2017
|
082 |
0 |
4 |
|a 512/.55
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Gray, Brayton,
|d 1940-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjHvGhX63pwvTD6mMVvcxC
|
245 |
1 |
0 |
|a Abelian properties of Anick spaces /
|c Brayton Gray.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2017.
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource (v, 111 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 246, number 1162
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 246, Number 1162 (first of 6 numbers), March 2017."
|
504 |
|
|
|a Includes bibliographical references (pages 109-110) and index.
|
505 |
0 |
0 |
|6 880-01
|g Chapter 1. Introduction -- Chapter 2.
|t Abelian Structures --
|g Chapter 3.
|t Whitehead Products --
|g Chapter 4.
|t Index p approximation --
|g Chapter 5.
|t Simplification --
|g Chapter 6.
|t Constructing gamma _k --
|g Chapter 7.
|t Universal Properties --
|g Appendix A.
|t The Case n=1 and the Case p=3.
|
520 |
3 |
|
|a "Anick spaces are closely connected with both EHP sequences and the study of torsion exponents. In addition they refine the secondary suspension and enter unstable periodicity. In this work we describe their H-space properties as well as universal properties. Techniques include a new kind on Whitehead product defined for maps out of co-H spaces, calculations in an additive category that lies between the unstable category and the stable category, and a controlled version of the extension theorem of Gray and Theriault (Geom. Topol. 14 (2010), no. 1, 243-275)."--Publisher website
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Abelian groups.
|
650 |
|
0 |
|a Topological groups.
|
650 |
|
0 |
|a Topological spaces.
|
650 |
|
0 |
|a Loop spaces.
|
650 |
|
0 |
|a H-spaces.
|
650 |
|
6 |
|a Groupes abéliens.
|
650 |
|
6 |
|a Groupes topologiques.
|
650 |
|
6 |
|a Espaces topologiques.
|
650 |
|
6 |
|a Espaces de lacets.
|
650 |
|
6 |
|a H-espaces.
|
650 |
|
7 |
|a Abelian groups
|2 fast
|
650 |
|
7 |
|a H-spaces
|2 fast
|
650 |
|
7 |
|a Loop spaces
|2 fast
|
650 |
|
7 |
|a Topological groups
|2 fast
|
650 |
|
7 |
|a Topological spaces
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Abelian properties of Anick spaces (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGtRXMh9MJkRy8Vk3wxKq3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Gray, Brayton, 1940-
|t Abelian properties of Anick spaces
|z 9781470423087
|w (DLC) 2016055094
|w (OCoLC)965446111
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1162.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4908278
|z Texto completo
|
880 |
0 |
|
|6 505-01/(S
|a Cover; Title page; Chapter 1. Introduction; 1.1. Statement of Results; 1.2. History; 1.3. Methods and Modifications; 1.4. Outline of Modifications; 1.5. Conventions and Notation; Chapter 2. Abelian Structures; 2.1. Preliminaries; 2.2. Whitehead Products; 2.3. Theriault's Criterion; 2.4. Compatibility of Modifications; 2.5. Properties of and ; Chapter 3. Whitehead Products; 3.1. Defining Whitehead Products Using co- Spaces; 3.2.-space Based and Relative Whitehead Products; 3.3. Iterated Whitehead Products and the Decomposition of Ω *Ω.
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4908278
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14683150
|
994 |
|
|
|a 92
|b IZTAP
|