Cargando…

Iterative learning control for multi-agent systems coordination /

"This book gives a comprehensive overview of the intersection between ILC and MAS, the range of topics include basic to advanced theories, rigorous mathematics to engineering practice, and linear to nonlinear systems. It addresses the crucial multi-agent coordination and control challenges that...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yang, Shiping, 1987- (Autor), Xu, Jian-Xin (Autor), Li, Xuefang, 1985- (Autor), Shen, Dong, 1982- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : John Wiley & Sons, Inc., 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn965446716
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 161205s2017 si ob 001 0 eng
010 |a  2016056133 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d DG1  |d N$T  |d YDX  |d IDEBK  |d EBLCP  |d UIU  |d COO  |d UPM  |d MERER  |d OTZ  |d UAB  |d DEBSZ  |d OCLCO  |d OCLCQ  |d DEBBG  |d OCLCQ  |d UMR  |d OCLCQ  |d KSU  |d RRP  |d OCLCQ  |d CAUOI  |d WYU  |d LVT  |d U3W  |d OCLCQ  |d LEAUB  |d AU@  |d OCLCQ  |d RDF  |d UKBTH  |d OCLCQ  |d UX1  |d VT2  |d OCLCQ  |d SNU  |d SFB  |d OCLCQ  |d IEEEE  |d OCLCO  |d IEEEE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1127952975  |a 1129360323  |a 1148070792  |a 1164468604 
020 |a 9781119189060  |q (pdf) 
020 |a 1119189063  |q (pdf) 
020 |a 9781119189077  |q (epub) 
020 |a 1119189071  |q (epub) 
020 |a 1119189047 
020 |a 9781119189046 
020 |a 9781119189053  |q (electronic bk.) 
020 |a 1119189055  |q (electronic bk.) 
024 7 |a 10.1002/9781119189053  |2 doi 
029 1 |a AU@  |b 000059040204 
029 1 |a AU@  |b 000067501048 
029 1 |a CHBIS  |b 011081495 
029 1 |a CHNEW  |b 000948204 
029 1 |a CHVBK  |b 483026719 
029 1 |a DEBSZ  |b 491139071 
029 1 |a GBVCP  |b 1002766966 
035 |a (OCoLC)965446716  |z (OCoLC)1127952975  |z (OCoLC)1129360323  |z (OCoLC)1148070792  |z (OCoLC)1164468604 
037 |a 7886196  |b IEEE 
042 |a pcc 
050 0 0 |a TJ217.5 
072 7 |a TEC  |x 009000  |2 bisacsh 
082 0 0 |a 629.8/9  |2 23 
084 |a TEC037000  |2 bisacsh 
049 |a UAMI 
100 1 |a Yang, Shiping,  |d 1987-  |e author. 
245 1 0 |a Iterative learning control for multi-agent systems coordination /  |c by Shiping Yang, Jian-Xin Xu, Xuefang Li, Dong Shen. 
264 1 |a Singapore :  |b John Wiley & Sons, Inc.,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "This book gives a comprehensive overview of the intersection between ILC and MAS, the range of topics include basic to advanced theories, rigorous mathematics to engineering practice, and linear to nonlinear systems. It addresses the crucial multi-agent coordination and control challenges that can be solved by ILC methods. Through systematic discussion of network theory and intelligent control, the authors explore future research possibilities, develop new tools, and provide numerous applications such as the power grid, communication and sensor networks, intelligent transportation system, and formation control. Readers will gain a roadmap to the latest advances in the fields and use their newfound knowledge to design their own algorithms"--  |c Provided by publisher 
504 |a Includes bibliographical references (pages 233-243) and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Optimal Iterative Learning Control for Multi-agent Consensus Tracking -- Iterative Learning Control for Multi-agent Coordination Under Iteration-Varying Graph -- Iterative Learning Control for Multi-agent Coordination with Initial State Error -- Multi-agent Consensus Tracking with Input Sharing by Iterative Learning Control -- A HOIM-Based Iterative Learning Control Scheme for Multi-agent Formation -- P-type Iterative Learning for Non-parameterized Systems with Uncertain Local Lipschitz Terms -- Synchronization for Nonlinear Multi-agent Systems by Adaptive Iterative Learning Control -- Distributed Adaptive Iterative Learning Control for Nonlinear Multi-agent Systems with State Constraints -- Synchronization for Networked Lagrangian Systems under Directed Graphs -- Generalized Iterative Learning for Economic Dispatch Problem in a Smart Grid -- Summary and Future Research Directions -- Appendix A: Graph Theory Revisit -- Appendix B: Detailed Proofs. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Intelligent control systems. 
650 0 |a Multiagent systems. 
650 0 |a Machine learning. 
650 0 |a Iterative methods (Mathematics) 
650 6 |a Commande intelligente. 
650 6 |a Systèmes multiagents (Intelligence artificielle) 
650 6 |a Apprentissage automatique. 
650 6 |a Itération (Mathématiques) 
650 7 |a TECHNOLOGY & ENGINEERING  |x Robotics.  |2 bisacsh 
650 7 |a Intelligent control systems  |2 fast 
650 7 |a Iterative methods (Mathematics)  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Multiagent systems  |2 fast 
655 0 |a Electronic books. 
700 1 |a Xu, Jian-Xin,  |e author. 
700 1 |a Li, Xuefang,  |d 1985-  |e author. 
700 1 |a Shen, Dong,  |d 1982-  |e author. 
758 |i has work:  |a Iterative learning control for multi-agent systems coordination (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGpFQ6jFgqtTcc8FcQjJwC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Yang, Shiping, 1987-  |t Iterative learning control for multi-agent systems coordination.  |d Singapore : John Wiley & Sons, Inc., 2017  |z 9781119189046  |w (DLC) 2016052027 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4822501  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4822501 
938 |a EBSCOhost  |b EBSC  |n 1484978 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37135443 
938 |a IEEE  |b IEEE  |n 7886196 
938 |a YBP Library Services  |b YANK  |n 13673391 
938 |a YBP Library Services  |b YANK  |n 13698461 
938 |a YBP Library Services  |b YANK  |n 13671507 
994 |a 92  |b IZTAP