Cargando…

An introduction to transfer entropy : information flow in complex systems /

This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present informa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Bossomaier, Terry R. J. (Terry Richard John)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham, Switzerland : Springer, ©2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn963793670
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 161118s2016 sz ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d IDEBK  |d EBLCP  |d GW5XE  |d OCLCQ  |d NJR  |d UPM  |d STF  |d OCLCF  |d N$T  |d IDB  |d ESU  |d VT2  |d OCLCQ  |d IOG  |d MERUC  |d OTZ  |d IAD  |d JBG  |d ICW  |d ILO  |d ICN  |d OCLCQ  |d UAB  |d U3W  |d REB  |d CAUOI  |d JG0  |d OCLCQ  |d KSU  |d EZ9  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d DCT  |d DKDLA  |d OCLCO  |d OCLCL 
019 |a 964292733  |a 964546427  |a 966194497  |a 966563799  |a 967708003  |a 971087180  |a 990599414  |a 1005833857  |a 1011848337  |a 1026459957  |a 1048193145  |a 1058382871  |a 1066467650  |a 1097095433  |a 1203977645 
020 |a 9783319432229  |q (electronic bk.) 
020 |a 3319432222  |q (electronic bk.) 
020 |z 9783319432212 
020 |z 3319432214 
024 7 |a 10.1007/978-3-319-43222-9  |2 doi 
029 1 |a AU@  |b 000059041074 
029 1 |a CHNEW  |b 000965677 
029 1 |a GBVCP  |b 873401700 
029 1 |a DKDLA  |b 820120-katalog:999893485305765 
029 1 |a AU@  |b 000073649055 
035 |a (OCoLC)963793670  |z (OCoLC)964292733  |z (OCoLC)964546427  |z (OCoLC)966194497  |z (OCoLC)966563799  |z (OCoLC)967708003  |z (OCoLC)971087180  |z (OCoLC)990599414  |z (OCoLC)1005833857  |z (OCoLC)1011848337  |z (OCoLC)1026459957  |z (OCoLC)1048193145  |z (OCoLC)1058382871  |z (OCoLC)1066467650  |z (OCoLC)1097095433  |z (OCoLC)1203977645 
037 |b Springer 
050 4 |a Q360 
050 4 |a QA75.5-76.95 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a SCI  |x 064000  |2 bisacsh 
072 7 |a TEC  |x 029000  |2 bisacsh 
082 0 4 |a 003/.54  |2 23 
082 0 4 |a 004 
049 |a UAMI 
245 0 3 |a An introduction to transfer entropy :  |b information flow in complex systems /  |c Terry Bossomaier, Lionel Barnett, Michael Harré, Joseph T. Lizier. 
260 |a Cham, Switzerland :  |b Springer,  |c ©2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Preface; Contents; List of Key Ideas; List of Open Research Questions; List of Key Results; Symbols; Acronyms; List of Tables; List of Figures; 1 Introduction; 1.1 Information Theory; 1.2 Complex Systems; 1.2.1 Cellular Automata; 1.2.2 Spin Models; 1.2.3 Oscillators; 1.2.4 Complex Networks; 1.2.5 Random Boolean Networks; 1.2.6 Flocking Behaviour; 1.3 Information Flow and Causality; 1.4 Applications; 1.5 Overview; 2 Statistical Preliminaries; 2.1 Set Theory; 2.2 Discrete Probabilities; 2.3 Conditional, Independent and Joint Probabilities; 2.3.1 Conditional Probabilities. 
505 8 |a 2.3.2 Independent Probabilities2.3.3 Joint Probabilities; 2.3.4 Conditional Independence; 2.3.5 Time-Series Data and Embedding Dimensions; 2.3.6 Conditional Independence and Markov Processes; 2.3.7 Vector Autoregression; 2.4 Statistical Expectations, Moments and Correlations; 2.5 Probability Distributions; 2.5.1 Binomial Distribution; 2.5.2 Poisson Distribution; 2.5.3 Continuous Probabilities; 2.5.4 Gaussian Distribution; 2.5.5 Multivariate Gaussian Distribution; 2.6 Symmetry and Symmetry Breaking; 3 Information Theory; 3.1 Introduction; 3.2 Basic Ideas; 3.2.1 Entropy and Information. 
505 8 |a 3.2.2 Mutual Information3.2.3 Conditional Mutual Information; 3.2.4 Kullback-Leibler Divergence; 3.2.5 Entropy of Continuous Processes; 3.2.6 Entropy and Kolmogorov Complexity; 3.2.7 Historical Note: Mutual Information and Communication; 3.3 Mutual Information and Phase Transitions; 3.4 Numerical Challenges; 3.4.1 Calculating Entropy; 3.4.2 Calculating Mutual Information; 3.4.3 The Non-stationary Case; 4 Transfer Entropy; 4.1 Introduction; 4.2 Definition of Transfer Entropy; 4.2.1 Determination of History Lengths; 4.2.2 Computational Interpretation as Information Transfer. 
505 8 |a 4.2.3 Conditional Transfer Entropy4.2.4 Source-Target Lag; 4.2.5 Local Transfer Entropy; 4.3 Transfer Entropy Estimators; 4.3.2 Symbolic Transfer Entropy; 4.3.1 KSG Estimation for Transfer Entropy; 4.3.3 Open-Source Transfer Entropy Software; 4.4 Relationship with Wiener-Granger Causality; 4.4.1 Granger Causality Captures Causality as Predictive of Effect; 4.4.2 Definition of Granger Causality; 4.4.3 Maximum-Likelihood Estimation of Granger Causality; 4.4.4 Granger Causality Versus Transfer Entropy; 4.5 Comparing Transfer Entropy Values; 4.5.1 Statistical Significance. 
505 8 |a 4.5.2 Normalising Transfer Entropy4.6 Information Transfer Density and Phase Transitions; 4.7 Continuous-Time Processes; 5 Information Transfer in Canonical Systems; 5.1 Cellular Automata; 5.2 Spin Models; 5.3 Random Boolean Networks; 5.4 Small-World Networks; 5.5 Swarming Models; 5.6 Synchronisation Processes; 5.7 Summary; 6 Information Transfer in Financial Markets; 6.1 Introduction to Financial Markets; 6.2 Information Theory Applied to Financial Markets; 6.2.1 Entropy and Economic Diversity: an Early Ecology of Economics; 6.2.2 Maximum Entropy: Maximum Diversity? 
504 |a Includes bibliographical references and index. 
520 |a This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Information theory. 
650 0 |a Artificial intelligence. 
650 2 |a Information Theory 
650 2 |a Artificial Intelligence 
650 6 |a Théorie de l'information. 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a SCIENCE  |x System Theory.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Operations Research.  |2 bisacsh 
650 7 |a Information theory  |2 fast 
700 1 |a Bossomaier, Terry R. J.  |q (Terry Richard John)  |1 https://id.oclc.org/worldcat/entity/E39PCjryxHDcm7YFt44KGdTjFq 
758 |i has work:  |a An introduction to transfer entropy (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFYbxPjgMjwYCkbQxcyrYK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
773 0 |t Springer eBooks 
776 0 8 |i Print version:  |z 3319432214  |z 9783319432212  |w (OCoLC)952788341 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4743985  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32381865 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4743985 
938 |a EBSCOhost  |b EBSC  |n 1361928 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36984908 
938 |a YBP Library Services  |b YANK  |n 13267104 
994 |a 92  |b IZTAP