Cargando…

Evaluation of Performance and Greenhouse Gas Emissions for Plants Achieving Low Phosphorus Effluents.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: DeBarbadillo, Christine
Formato: Electrónico eBook
Idioma:Inglés
Publicado: IWA Publishing, 2016.
Colección:WERF Research Report Series
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Copyright; Acknowledgments; Abstract and Benefits; Table of Contents; List of Tables; List of Figures; List of Acronyms and Abbreviations; Executive Summary; ES. 1 Introduction; ES. 2 Methodology; ES. 3 Conclusions; ES. 4 Discussion; ES. 5 Research Needs; Chapter 1.0: Project Background; 1.1 Introduction; 1.2 Project Background; 1.3 Objectives; 1.4 Approach; Chapter 2.0: Evaluation of Operational Practices at Plants Achieving Low Effluent Phosphorus Concentrations; 2.1 Introduction; 2.2 Participating Utilities; 2.3 Phosphorus Removal Performance Statistics; 2.4 Chemical Dosing.
  • 2.5 Influent Wastewater Characteristics2.6 Tertiary Phosphorus Removal; 2.7 Phosphorus Removal Operational Strategies; 2.8 Impact of Phosphorus Recovery; Chapter 3.0: Greenhouse Gas Emissions Associated with Phosphorus Removal; 3.1 Introduction; 3.2 Prior Work; 3.3 Greenhouse Gas Emissions Metric; 3.3.1 Energy Demand; 3.3.2 Chemicals Demand; 3.3.3 Biosolids Hauling; 3.4 Materials and Methods; 3.4.1 Treatment Descriptions and Limits; 3.4.2 GHG Emission Calculations; 3.4.3 System Inputs; 3.4.4 Results; 3.5 Discussion; 3.5.1 Unit GHG Emissions Results; 3.5.2 Reliability of Achieving Low P Limits.
  • 3.5.3 GHG Emissions Excluded or Not Captured3.5.3.1 Construction GHG Emissions; 3.5.3.2 Methane and Nitrous Oxide; 3.5.3.3 Plant-Wide Aeration Impacts; 3.5.3.4 Overall Benefits of P Recovery; 3.5.3.5 Biosolids P Content; 3.5.4 Use of GHG Emissions as a Sustainability Metric; 3.6 Conclusions; Chapter 4.0: Balancing Chemical and Biological Interactions When Achieving Low Effluent Phosphorus Concentrations; 4.1 Introduction; 4.2 Impact of Waste Chemical Solids on Phosphorus Removal Operation; 4.3 Examination of Chemical Dosing Interruptions at Blue Plains AWTP.
  • 4.4 Benefit of Fermenter Operation at Kalispell AWTP4.5 Enhancement of EBPR at Iowa Hill WRF Using Mixed Liquor Fermentation; 4.6 Pilot Testing of a Small-Footprint EBPR Process at Robert W. Hite Treatment Facility; 4.6.1 Full-Scale Pilot Anaerobic RAS Reactor Design; 4.6.2 Testing Phases; 4.6.3 Discussion of Results; 4.6.4 Summary; 4.7 Dewaterability of Anaerobically Digested EBPR Biosolids; 4.7.1 Background; 4.7.2 Phosphorus Removal vs. Dewaterability; 4.7.3 Case Studies; 4.7.3.1 Durham AWTP; 4.7.3.2 Rock Creek AWTP; 4.7.3.3 Robert W. Hite Treatment Plant; 4.7.4 Discussion.
  • Chapter 5.0: Summary and Conclusions5.1 Background; 5.2 Effluent Quality and Permitting Considerations; 5.2.1 Phosphorus Removal Performance and Permit Limits; 5.2.2 Chemical Consumption; 5.2.3 Wastewater Characteristics; 5.2.4 Operational Strategies; 5.3 Greenhouse Gas Emissions for Phosphorus Removal; 5.3.1 Fate of Phosphorus in Discharge and Biosolids; 5.3.2 Results and Conclusions from Evaluation of GHG Emissions; 5.4 Design and Operational Factors That Affect the Carbon Footprint of Phosphorus Removal; 5.4.1 The Role of Fermentation in EBPR; 5.4.2 Mixing During Chemical Addition.