Cargando…

Unmanned aircraft systems /

Covering the design, development, operation and mission profiles of unmanned aircraft systems, this single, comprehensive volume forms a complete, stand-alone reference on the topic. The volume integrates with the online Wiley Encyclopedia of aerospace Engineering, providing many new and updated art...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Atkins, Ella Marie (Editor ), Ollero, A. (Editor ), Tsourdos, Antonios (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, UK ; Hoboken, NJ : John Wiley & Sons, 2016.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Unmanned Aircraft Systems
  • Contents
  • Contributors
  • Foreword
  • Preface
  • Part 1: Introductory
  • Chapter 1: UAS Uses, Capabilities, Grand Challenges
  • 1 Introduction
  • 2 Uses
  • Missions and Applications
  • 2.1 Early evolution
  • 2.2 Dull, dirty, and dangerous
  • 2.3 Emergence of civil and commercial applications
  • 3 Emerging Capabilities And A Look Ahead
  • 3.1 Expanding the design space and operational envelope
  • 3.2 Autonomy
  • 4 Grand Challenges Ahead
  • 4.1 Access to the airspace
  • 4.2 The quest for trust
  • 4.3 Integration
  • 5 Summary
  • References
  • Part 2: Missions
  • Chapter 2: Remote Sensing Methodology for Unmanned Aerial Systems
  • 1 Introduction
  • 2 UAS Remote Sensing Methodology
  • 3 Core Concepts in UAS Remote Sensing Applications
  • 3.1 Detection/Counting Applications
  • 3.2 Identification/Localization Applications
  • 3.3 Analysis Applications
  • 4 UAS Imaging Equipment
  • 4.1 Video Systems
  • 4.2 Digital Cameras
  • 4.3 Calibrated Digital Imagers
  • 4.3.1 Digital Cameras as Calibrated Imagers
  • 4.3.2 Multispectral and Hyperspectral Imagers
  • 4.3.3 Spectral Sensitivity
  • 5 Conclusion
  • References
  • Chapter 3: Autonomous Parachute-Based Precision Delivery Systems
  • 1 Introduction
  • 2 Concept of Operations and Key Requirements
  • 3 Pads Family and Steady-State Performance
  • 4 Modeling
  • 4.1 Governing equations
  • 4.2 Apparent mass and inertia
  • 4.3 PADS aerodynamics
  • 4.4 Effect of the control inputs
  • 4.5 Linearized models and stability
  • 5 Pads Gnc
  • 5.1 Maneuver-based guidance
  • 5.2 Accounting for the variable winds
  • 5.3 Optimal precision placement guidance
  • 6 Other Developments
  • 6.1 Glide slope angle control
  • 6.2 Reduced cost PADS
  • 7 Conclusion
  • References
  • Chapter 4: Networked Multiple UAS
  • 1 Introduction
  • 2 Principles of Radio Links
  • 3 Air-to-Ground Communications.
  • 4 Air-to-Air Communications
  • 5 Antenna Types and Locations
  • 5.1 Omnidirectional Antennae
  • 5.2 Directional Antennae
  • 5.3 Phased Arrays
  • 5.4 Antenna Locations
  • 6 UAS Networks
  • 7 Conclusions
  • Notation
  • Abbreviations
  • References
  • Chapter 5: Weapons Integration
  • 1 Introduction
  • 2 Issues for System Design and Integration
  • 3 Types of Weapon
  • 4 Ballistic Bombs
  • 4.1 Physical Preparation
  • 4.2 Aircraft Attachment
  • 4.3 Targeting
  • 4.4 Release
  • 5 Smart Bombs
  • 5.1 Physical Preparation
  • 5.2 Aircraft Attachment
  • 5.3 Targeting
  • 5.4 Release and Guidance
  • 6 Complex Air-To-Ground Weapons
  • 7 Air-To-Air Missiles
  • 7.1 Aircraft Attachment
  • 7.2 Targeting
  • 7.3 Release and Guidance
  • 7.4 End-Game
  • 8 Releasing Weapons from Weapon Bays
  • 9 Stores Management Systems
  • 10 Weapon Interface Standards
  • 11 Future Systems
  • Acknowledgments
  • Related Article
  • Further Reading
  • Part 3: Airframe Configurations
  • Chapter 6: Classes and Missions of UAVs
  • Acronyms
  • 1 Overview
  • 2 Examples of UAVs
  • 2.1 Very Small UAVs
  • 2.2 Small UAVs
  • 2.3 Medium UAVs
  • 2.4 Large UAVs
  • 3 Expendable UAVs
  • 4 Classes of UAV Systems
  • 4.1 Classification by Range and Endurance
  • 4.2 The Tier System
  • 4.3 Commercial and Consumer UAVs
  • 5 Missions
  • 5.1 Military versus Civilian Missions
  • 6 Conclusion
  • Related Article
  • References
  • Chapter 7: Launch of UAVs
  • Acronyms
  • 1 Overview
  • 2 Basic Considerations
  • 3 UAV Launch Methods for Fixed-Wing Vehicles
  • 3.1 Rail launchers
  • 3.2 Pneumatic launchers
  • 3.3 Hydraulic/pneumatic launchers
  • 3.4 Zero-length RATO launch of UAVs
  • 4 Vertical Takeoff and Landing UAV Launch
  • 5 Air Launch of UAVs
  • 6 Conclusions
  • Related Article
  • Acknowledgment
  • Reference
  • Chapter 8: Recovery of UAVs
  • Acronyms
  • 1 Overview
  • 2 Conventional Landings
  • 3 Vertical Net Systems.
  • 4 Parachute Recovery
  • 5 VTOL UAVs
  • 6 Mid-air Retrieval
  • 7 Shipboard Recovery
  • 8 Conclusions
  • Related Article
  • Acknowledgment
  • Reference
  • Chapter 9: Development of Centimeter-Sized Aerial Vehicles
  • 1 Introduction
  • 2 Development of a Fixed-Wing UAV
  • 2.1 Overview of Fixed-Wing UAVs' Configuration
  • 2.2 Fixed-Wing UAV Developed in Japan
  • 3 Development of a Rotary-Wing UAV
  • 3.1 Centimeter-Sized Rotary-wing UAVs Developed All Over The World
  • 4 Controller Design of Centimeter-Sized UAV
  • 4.1 Control Theory
  • 4.2 Equipment
  • 4.3 Flight Control Boards MAVCs 1 and 2
  • 5 Wing Characteristics at a Low Reynolds Number and Flight Stability of a Fixed-Wing MAV
  • Acknowledgments
  • References
  • Part 4: UAS Design and Subsystems
  • 10: Overview of UAS Control Stations
  • 1 Introduction
  • 2 Terminology and Definition
  • 3 Classification
  • 4 Main Design Characteristics
  • 4.1 Architecture
  • 4.2 Main Functions
  • 4.3 Human Factors
  • 4.4 Environmental Conditions
  • 4.5 Certification and Safety
  • 4.6 Interoperability
  • 4.7 Security
  • 5 Future Trends
  • 6 Conclusions
  • Acknowledgments
  • References
  • 11: Propulsion Systems
  • 1 Introduction
  • 1.1 Propulsion Variants
  • 1.2 Electrification Propulsion Variants
  • 1.3 Soft Methods
  • Intelligent Power Management and Energy Conservation
  • 2 Conclusions
  • Notation and Nomenclature
  • References
  • Chapter 12: Power Generation and Energy Management
  • 1 Introduction
  • 2 Onboard Energy Sources and Design Implications
  • 2.1 Combustion Engines
  • 2.2 Battery Electric Power
  • 2.3 Solar Power
  • 2.4 Fuel Cells
  • 3 Flight Planning for Energy Management
  • 3.1 Energy-Optimal Flight Speed
  • 3.2 Energy-Optimal Flight Versus Nominal Cruise Speed Flight
  • 3.3 Routing
  • 4 Harvesting Atmospheric Energy
  • 4.1 Autonomous Static Soaring
  • 4.2 Dynamic Soaring
  • 5 Conclusion
  • References.
  • Chapter 13: Control System Mechanization
  • 1 Control Fundamentals of UAS
  • 1.1 UAS and Control Systems
  • 1.2 Types of FCS
  • 1.3 UAS Control Architecture
  • 1.4 UAS Control System Design Consideration
  • 2 UAS Control System Elements
  • 2.1 Sensors and Its Integration
  • 2.2 Actuators
  • 2.3 Flight Control Computer
  • 3 FCS Development Process
  • 3.1 Control System Design
  • 3.2 Software-in-the-Loop Simulation
  • 3.3 Hardware-in-the-Loop Tests
  • 4 Some Practical Issues
  • 4.1 Fail-Safe Procedures for FCS
  • 4.2 Flight Tests and Communication with Control Station
  • 5 Summary
  • References
  • Part 5: Autonomy
  • Chapter 14: Relative Navigation in GPS-Degraded Environments
  • 1 Introduction
  • 2 Relative Navigation Framework
  • 2.1 Relative Front-End Overview
  • 2.2 Global Back-End Overview
  • 2.3 Motivating Scenarios
  • 3 Relative Front End
  • 3.1 Visual Odometry
  • 3.2 Estimation
  • 3.3 Low-level Path Generation and Following
  • 3.4 Control
  • 4 Global Back End
  • 4.1 Pose Graph
  • 4.2 Place Recognition
  • 4.3 Intermittent GPS Integration
  • 4.4 Map Optimization
  • 4.5 High-Level Path Planning
  • 5 Conclusion
  • References
  • Chapter 15: Target Detection and Mission Planning Based on Pigeon-Inspired Optimization
  • 1 Introduction
  • 2 Pigeon-Inspired Optimization
  • 2.1 Natural Behavior of Pigeons
  • 2.2 Mathematical Model
  • 2.3 The Procedure of Basic PIO
  • 3 PIO for Target Detection
  • 3.1 Problem Formulation
  • 3.2 The Implementation Procedure of SAPIO-Optimized EPF
  • 3.3 Experimental Results
  • 4 PIO for UAV Path Planning
  • 4.1 Path Planning Using PIO
  • 4.2 PP-PIO-Based Three-Dimensional Path Planning
  • 5 Mission Assignment Based on PIO
  • 5.1 Mission Assignment Problem Formulation
  • 5.2 Experimental Results
  • 6 Summary
  • References
  • Chapter 16: Autonomy Architectures
  • 1 Introduction to Autonomy Architectures for UAS.
  • 1.1 Autonomy Levels for UAS
  • 1.2 Overview of Architectures for Autonomous Systems
  • 2 Autonomy Architecture for UAS
  • 2.1 Low-Level Architecture
  • 2.2 High-Level Architecture
  • 3 Example of Autonomy Architecture: The ARCAS Project
  • 3.1 Low-Level ARCAS Architecture
  • 3.2 High-Level ARCAS Architecture
  • 3.3 Example of ARCAS Complex Mission: Assembly Operations
  • 4 Conclusions
  • References
  • Chapter 17: Obstacle Avoidance: Static Obstacles
  • 1 Introduction
  • 2 Avoiding Static Obstacles
  • 2.1 Voronoi Diagram
  • 2.2 Cell Decomposition
  • 2.3 Visibility Graph
  • 2.4 Potential Field and Sampling-Based Methods
  • 3 Research on Obstacle Avoidance
  • 4 Avoidance of Static Obstacles
  • 5 Reactive Planning
  • 6 Summary
  • References
  • Chapter 18: Guided Weapon and UAV Navigation and Path-Planning
  • 1 Problems of GPS and INS for Missiles and UAVs
  • 1.1 Global Positioning System (GPS) Navigation
  • 1.2 Inertial Navigation System (INS)
  • 1.3 Inertial Navigation Algorithm
  • 1.4 GPS/INS Integration
  • 2 Principles and Practice of TERPROM and TERCOM
  • 2.1 Aircraft and UAV Path Planning
  • 3 Tactical Missile Guidance Strategies
  • 3.1 CLOS Guidance and Variations
  • 3.2 Proportional Navigation (PN) Guidance
  • 3.3 Miss Distance (MD)
  • 4 Conclusions
  • Notation
  • Nomenclature
  • References
  • Chapter 19: Embedded UAS Autopilot and Sensor Systems
  • 1 Introduction
  • 2 Autopilot Architecture
  • 3 Inner-Loop Control Structure
  • 3.1 Lateral Autopilot
  • 3.2 Longitudinal Autopilot
  • 4 On-Board Sensors and Sensor Processing
  • 4.1 Angular Rates, Airspeed, and Altitude
  • 4.2 Roll and Pitch Angles
  • 4.3 Inertial Position and Heading
  • 5 GPS Navigation
  • 5.1 Straight-Line Path Following
  • 5.2 Orbit Following
  • 6 Summary
  • Acknowledgments
  • End Notes
  • References
  • Part 6: Control.