Algorithmic problems of group theory, their complexity, and applications to cryptography /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2015.
|
Colección: | Contemporary mathematics (American Mathematical Society) ;
633. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title page
- Contents
- Preface
- Secret sharing using non-commutative groups and the shortlex order
- 1. Introduction
- 2. Formal Definition
- 3. Shamir�s Secret Sharing Scheme
- 4. Secret Sharing Using Non-commutative Groups
- 5. Updating Relators
- 6. Conclusion
- References
- An algorithm that decides conjugacy in a certain generalized free product
- 1. Introduction
- 2. Preliminaries
- 3. The Algorithm
- References
- Classification of automorphic conjugacy classes in the free group on two generators
- 1. Introduction
- 2. The graph Î?()3. Non-root classes
- 4. Root classes
- 5. Enumeration
- Appendix A. Table of automorphic conjugacy classes
- Appendix B. Number of automorphic conjugacy classes of each type
- Appendix C. Number of paths of each size
- Acknowledgement
- References
- On elementary free groups
- 1. Introduction
- 2. The Tarski Problems and Elementary Free Groups
- 3. Surface Groups and Magnus� Theorem
- 4. Cyclic Centralizers and Commuting Elements
- 5. Hyperbolicity and Stable Hyperbolicity
- 6. The Retract Theorem and Turner Groups
- 7. Conjugacy Separability of Elementary Free Groups8. Tame Automorphisms of Elementary Free Groups
- 9. Faithful Representations in (2,\C)
- References
- An application of a localized version of an axiom of Ian Chiswell
- 1. Introduction
- 2. Questions
- References
- A note on Stallings� pregroups
- 1. Introduction
- 2. Adds, Prees and Pregroups
- 3. Kushner�s Generalization of a Pregroup. T2-prees
- 4. Axiom [GLS2]
- 5. Generalizations
- References
- A CCA secure cryptosystem using matrices over group rings
- 1. Cramer-Shoup cryptosystem2. A CCA-2 secure cryptosystem using matrices over group rings
- 3. Adaptive CCA security for matrices over group rings
- References
- The MOR cryptosystem and finite -groups
- 1. Introduction
- 2. Definitions and notations
- 3. The MOR cryptosystem
- 4. MOR cryptosystems on finite -groups using ′-automorphisms
- 5. The MOR cryptosystem and elementary abelian -group
- 6. The extra-special -groups and its automorphism group
- 7. MOR cryptosystems on finite -groups using -automorphisms
- 8. Conclusion