Relative fidelity processing of seismic data : methods and applications /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
John Wiley & Sons, Inc.,
2017.
|
Edición: | 1 edition. |
Colección: | Wiley series in petroleum industry press series list
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Title Page ; Copyright Page; Contents; Preface; Chapter 1 Study on Method for Relative Fidelity Preservation of Seismic Data; 1.1 Introduction; 1.2 Discussion on Impact on Processing of High-resolution, High SNR for Seismic Acquisition and Observation Mode; 1.3 Discussion on the Cause of Notching; 1.4 Discussion of Impact on Processing of Relative Fidelity Preservation Seismic Data for Seismic Acquisition and Observation Mode; 1.5 Comparison of Results of High-resolution, High SNR Processing and Relative Fidelity Preservation Processing ; 1.6 Elastic Wave Forward Modeling; 1.7 Conclusions.
- Chapter 3 Study of Reverse Time Migration Method for Areas With Complicated Structures Based on the GPU/CPU System3.1 Introduction; 3.2 The GPU/CPU High0performance Calculation and Its Application in Seismic Exploration ; 3.2.1 Introduction of the GPU/CPU system; 3.2.2 GPU/CPU high-performance computing and the application in seismic exploration ; 3.3 Study on the Two-way Wave Extrapolation Operator and Its Boundary Conditions ; 3.3.1 High-order difference method ; 3.3.2 Boundary condition issue of reverse time migration.
- 3.4 Study on the Imaging Condition and Low-frequency Noise Suppression Method 3.4.1 Study on imaging condition and low-frequency noise generation mechanism ; 3.4.2 Theory and application of Laplace filtering suppressing low-frequency noise ; 3.5 Study and Application of RTM Prestack Imaging Algorithm based on the GPU/CPU System; 3.5.1 Analysis of structural characteristics of the GPU/CPU platform; 3.5.2 Analysis of the application features of CUDA programming language in the GPU/CPU platform; 3.5.3 Realization strategy of RTM prestack imaging based on the GPU/CPU; 3.6 Conclusions; References.
- Chapter 4 Study and Application of Velocity Model Building Method for the Areas with Complicated Structures4.1 Introduction; 4.2 Status Quo and the Development of the Velocity Model Building Method; 4.3 Impacting Factors for the Velocity Model Building; 4.3.1 The influences of initial velocity model accuracy on velocity modeling; 4.3.2 The influences of static correction on velocity modeling; 4.3.3 The influences of SNR on velocity modeling; 4.3.4 The influence of prestack data irregularity on velocity modeling; 4.3.5 The influences of geological body on velocity.