Cargando…

Graphs for Pattern Recognition.

This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gainanov, Damir
Formato: Electrónico eBook
Idioma:Inglés
Publicado: De Gruyter, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn960975717
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 161021s2016 xx ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d CN3GA  |d OCLCO  |d OCLCQ  |d OCLCF  |d YDX  |d EBLCP  |d COO  |d N$T  |d IDB  |d NAM  |d VGM  |d OCLCO  |d OCLCQ  |d OCLCO  |d NRC  |d MERUC  |d ZCU  |d ICG  |d SNK  |d DKU  |d AUW  |d IGB  |d D6H  |d UAB  |d OCLCQ  |d VTS  |d OCLCQ  |d OCLCO  |d G3B  |d S8J  |d S9I  |d STF  |d OCLCA  |d DKC  |d OCLCQ  |d OTZ  |d OCLCQ  |d SFB  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 961059086  |a 962793042  |a 963741945  |a 963744030  |a 964922755  |a 966382676  |a 967717112  |a 968173519 
020 |a 3110481065  |q (ebk) 
020 |a 9783110481068 
020 |z 3110480131 
020 |z 3110480301 
020 |z 9783110480139  |q (alk. paper) 
020 |z 9783110480306 
029 1 |a AU@  |b 000066769840 
035 |a (OCoLC)960975717  |z (OCoLC)961059086  |z (OCoLC)962793042  |z (OCoLC)963741945  |z (OCoLC)963744030  |z (OCoLC)964922755  |z (OCoLC)966382676  |z (OCoLC)967717112  |z (OCoLC)968173519 
037 |a 964181  |b MIL 
050 4 |a QA295  |b .G275 2016 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516/.1  |2 23 
049 |a UAMI 
100 1 |a Gainanov, Damir. 
245 1 0 |a Graphs for Pattern Recognition. 
260 |b De Gruyter,  |c 2016. 
300 |a 1 online resource (158) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 133-140) and index. 
520 |a This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition. Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property - systems whose multi-indices of feasible subsystems form abstract simplicial complexes (independence systems), which are fundamental objects of combinatorial topology. The methods of data mining and machine learning discussed in this monograph form the foundation of technologies like big data and deep learning, which play a growing role in many areas of human-technology interaction and help to find solutions, better solutions and excellent solutions. Contents: Preface Pattern recognition, infeasible systems of linear inequalities, and graphs Infeasible monotone systems of constraints Complexes, (hyper)graphs, and inequality systems Polytopes, positive bases, and inequality systems Monotone Boolean functions, complexes, graphs, and inequality systems Inequality systems, committees, (hyper)graphs, and alternative covers Bibliography List of notation Index. 
505 0 0 |t Frontmatter --  |t Preface --  |t Contents --  |t 1. Pattern recognition, infeasible systems of linear inequalities, and graphs --  |t 2. Complexes, (hyper)graphs, and inequality systems --  |t 3. Polytopes, positive bases, and inequality systems --  |t 4. Monotone Boolean functions, complexes, graphs, and inequality systems --  |t 5. Inequality systems, committees, (hyper)graphs, and alternative covers --  |t Bibliography --  |t List of notation --  |t Index 
506 0 |a Open Access  |5 EbpS 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
610 2 7 |a Deutsche Arbeitsgemeinschaft für Mustererkennung  |2 gnd 
650 0 |a Inequalities (Mathematics) 
650 0 |a Graph theory. 
650 6 |a Inégalités (Mathématiques) 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Graph theory  |2 fast 
650 7 |a Inequalities (Mathematics)  |2 fast 
650 7 |a Lineares Ungleichungssystem  |2 gnd 
650 7 |a Graphentheorie  |2 gnd 
650 7 |a Kombinatorische Optimierung  |2 gnd 
758 |i has work:  |a Graphs for pattern recognition (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG8cwXBcTqKQtBQQBhVbq3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9783110480139  |z 3110480131  |w (DLC) 2016042698  |w (OCoLC)945641371 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4718418  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1385617 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34324476 
938 |a YBP Library Services  |b YANK  |n 12835078 
938 |a YBP Library Services  |b YANK  |n 13158423 
994 |a 92  |b IZTAP