Applied Impact Mechanics.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Newark :
Wiley,
2016.
|
Colección: | Ane/Athena Books.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface v <p>List of Figures xv</p> <p>List of Tables xix</p> <p>List of Symbols xxi</p> <p><b>Chapter 1: Introduction 1-18</b></p> <p>1.1 General Introduction to Engineering Mechanics 2</p> <p>1.2 General Introduction to Fracture Mechanics 3</p> <p>1.3 Impact Mechanics
- Appreciating Impact Problems in Engineering 5</p> <p>1.4 Historical Background 8</p> <p>1.5 Percussion, Concussion, Collision and Explosion 10</p> <p>1.6 Summary 11</p> <p>Bibliography 12</p> <p><b>Chapter 2: Rigid Body Impact Mechanics 19-34</b></p> <p>2.1 Introduction 19</p> <p>2.2 Impulse
- Momentum Equations 21</p> <p>2.3 Coefficient of Restitution
- Classical Definitions 21</p> <p>2.3.1 Kinematic Coefficient of Restitution 22</p> <p>2.3.2 Measurement of Coefficient of Restitution 22</p> <p>2.3.3 Relative Assessment of Various Impacts in Sports 23</p> <p>2.4 Coefficient of Restitution
- Alternate Definition 24</p> <p>2.4.1 Kinetic Coefficient of Restitution 24</p> <p>2.4.1.1 Case Study: Rebound of Colliding Vehicles 25</p> <p>2.4.2 Energy Coefficient of Restitution 27</p> <p>2.4.2.1 Application in Vehicle Collisions 28</p> <p>2.5 Oblique Impact
- Role of Friction 29</p> <p>2.6 Limitations of Rigid Body Impact Mechanics 31</p> <p>2.7 Summary 31</p> <p>Exercise Problems 32</p> <p>Bibliography 34</p> <p><b>Chapter 3: One-Dimensional Impact Mechanics of Deformable Bodies 35-54</b></p> <p>3.1 Introduction 35</p> <p>3.2 Single Degree of Freedom Idealization of Impact Process 36</p> <p>3.2.1 Governing Equations of Single Degree of Freedom (SDOF) System 37</p> <p>3.2.2 Forced Vibrations due to Exponentially Decaying Loads 38</p> <p>3.3 1-D Wave Propagation in Solids Induced by Impact 41</p> <p>3.3.1 Longitudinal Waves in Thin Rods 42</p> <p>3.3.1.1 The Governing Equation for Waves in Long Rods 42</p> <p>3.3.1.2 Free Vibrations in a Finite Rod 46</p> <p>3.3.2 Flexural Waves in Thin Rods 47</p> <p>3.3.2.1 The Governing Equation for Flexural Waves in Rods 47</p> <p>3.3.2.2 Free Vibrations of Finite Beams 48</p> <p>3.3.3 The D'Alembert's Solution for Wave Equation 50</p> <p>3.4 Summary 51</p> <p>Exercise Problems 52</p> <p>Bibliography 54</p> <p><b>Chapter 4: Multi-Dimensional Impact Mechanics of Deformable Bodies 55-78</b></p> <p>4.1 Introduction 55</p> <p>4.2 Analysis of Stress 56</p> <p>4.2.1 Stress Components on an Arbitrary Plane 56</p> <p>4.2.2 Principal Stresses and Stress Invariants 57</p> <p>4.2.3 Mohr's Circles 58</p> <p>4.2.4 Octahedral Stresses 58</p> <p>4.2.5 Decomposition into Hydrostatic and Pure Shear States 59</p> <p>4.2.6 Equations of Motion of a Body in Cartesian Coordinates 60</p> <p>4.2.7 Equations of Motion of a Body in Cylindrical Coordinates 61</p> <p>4.2.8 Equations of Motion of a Body in Spherical Coordinates 62</p> <p>4.3 Analysis of Strain 63</p> <p>4.3.1 Deformation in the Neighborhood of a Point 63</p> <p>4.3.2 Compatibility Equations 64</p> <p>4.3.3 Strain Deviator 65</p> <p>4.4 Linearised Stress-Strain Relations 65</p> <p>4.4.1 Stress-Strain Relations for Isotropic Materials 66</p> <p>4.5 Waves in Infinite Medium 67</p> <p>4.5.1 Longitudinal Waves (Primary/Dilatational/Irrotational Waves) 67</p> <p>4.5.1.1 Longitudinal Waves 68</p> <p>4.5.1.2 The Governing Equations for Longitudinal Waves 68</p> <p>4.5.2 Transverse Waves (Secondary/Shear/Distortional/Rotational Wave) 69</p> <p>4.5.2.1 Transverse Waves 69</p> <p>4.5.2.2 The Governing Equations for Transverse Waves 70</p> <p>4.6 Waves in Semi-Infinite Media 70</p> <p>4.6.1 Surface Waves 71</p> <p>4.6.2 Symmetric Rayleigh-Lamb Spectrum in Elastic Layer 74</p> <p>4.7 Summary 76</p> <p>Exercise Problems 76</p> <p>Bibliography 78</p> <p><b>Chapter 5: Experimental Impact Mechanics 79-131</b></p> <p>5.1 Introduction 80</p> <p>5.2 Quasi-Static Material Tests 81</p> <p>5.3 Pendulum Impact Tests 87</p> <p>5.4 About High Strain Rate Testing of Materials 90</p> <p>5.5 Split Hopkinson's Pressure Bar Test 91</p> <p>5.5.1 Historical Background and Significance 91</p> <p>5.5.2 Improvements in SHPB Test Apparatus 92</p> <p>5.5.3 Principle of SHPB Test 93</p> <p>5.5.4 Theory Behind SHPB 95</p> <p>5.5.5 Design of Pressure Bars for a SHPB Apparatus 97</p> <p>5.5.6 Applications, Availability and Few Results 100</p> <p>5.6 Taylor Cylinder Impact Test 103</p> <p>5.6.1 Methodology 104</p> <p>5.6.2 Strain Rates 107</p> <p>5.6.3 Limitations and Improvements 107</p> <p>5.6.4 Case Study-1: Experiments with a Paraffin Wax 109</p> <p>5.6.5 Case Study-2: Experiments with Steel Cylinders 109</p> <p>5.7 Drop Impact Test 110</p> <p>5.7.1 Drop Specimen Test (DST) 111</p> <p>5.7.1.1 Few Standards for DST by Free Fall 113</p> <p>5.7.1.2 Experimental Setup for DST 113</p> <p>5.7.1.3 DST Procedure 115</p> <p>5.7.1.4 A Case Study: DST of a helicopter in NASA 116</p> <p>5.7.2 Drop Weight Test (DWT) 118</p> <p>5.7.2.1 Experimental Setup for DWT 119</p> <p>5.7.2.2 Case Study-1: DWT to study fracture process in structural concrete 121</p> <p>5.7.2.3 Case Study-2: DWT tower for applying both compressive and 124</p> <p>5.8 Summary 125</p> <p>Exercise Problems 126</p> <p>References 127</p> <p><b>Chapter 6: Modeling Deformation and Failure Under Impact 133-169</b></p> <p>6.1 Introduction 133</p> <p>6.2 Equation of State 135</p> <p>6.2.1 Gruneisen Parameter 135</p> <p>6.2.2 Shock-Hugoniot Curve 136</p> <p>6.2.3 Rankine-Hugoniot Conditions 137</p> <p>6.2.4 Mie-Gruneisen (Shock) Equation of State 139</p> <p>6.2.4.1 Implementation of Mie-Gruneisen Equation of State 141</p> <p>6.2.5 Murnaghan Equation of State 142</p> <p>6.2.6 Linear Equation of State 142</p> <p>6.2.7 Polynomial Equation of State 143</p> <p>6.2.8 High Explosive Equation of State 143</p> <p>6.3 Constitutive Models for Material Deformation and Plasticity 144</p> <p>6.3.1 Plasticity 145</p> <p>6.3.2 Plastic Isotropic or Kinematic Hardening Material Model 147</p> <p>6.3.3 Thermo-Elastic-Plastic Material Model 148</p> <p>6.3.4 Power-Law Isotropic Plasticity Material Model 148</p> <p>6.3.5 Johnson-Cook Material Model 149</p> <p>6.3.5.1 Determination of Parameters in Johnson-Cook Model 150</p> <p>6.3.6 Zerilli-Armstrong Material Model 151</p> <p>6.3.6.1 Modified Zerilli-Armstrong Material Model 151</p> <p>6.3.6.2 Determination of Parameters in Zerilli-Armstrong Model 152</p> <p>6.3.7 Combined Johnson-Cook and Zerilli-Armstrong Material Model 152</p> <p>6.3.8 Steinberg-Guinan Material Model 153</p> <p>6.3.9 Barlat's 3 Parameter Plasticity Material Model 153</p> <p>6.3.10 Orthotropic Material Model 154</p> <p>6.3.11 Summary of Material Models 154</p> <p>6.4 Failure/Damage Models 155</p> <p>6.4.1 Void Growth and Fracture Strain Model 156</p> <p>6.4.1.1 Void Growth Model 156</p> <p>6.4.1.2 Fracture Strain Model 157</p> <p>6.4.2 Johnson-Cook Failure Model 158</p> <p>6.4.3 Unified Model of Visco-plasticity and Ductile Damage 159</p> <p>6.4.4 Johnson-Holmquist Concrete Damage Model 160</p> <p>6.4.4.1 Determination of Parameters in Johnson-Holmquist Model 161</p> <p>6.4.5 Chang-Chang Composite Damage Model 161</p> <p>6.4.6 Orthotropic Damage Model 162</p> <p>6.4.7 Plastic Strain Limit Damage Model 162</p> <p>6.4.8 Material Stress/Strain Limit Damage Model 162</p> <p>6.4.9 Implementation of Damage 163</p> <p>6.4.9.1 Discrete Technique 163</p> <p>6.4.9.2 Operator Split Technique 163</p> <p>6.5 Temperature Rise During Impact 164</p> <p>6.6 Summary 165</p> <p>Exercise Problems 166</p> <p>References 167</p> <p><b>Chapter 7: Computational Impact Mechanics 171-219</b></p> <p>7.1 Introduction 171</p> <p>7.2 Principles of Numerical Formulations 174</p> <p>7.2.1 Classical Continuum Methods: Lagrangean, Eulerian and 174</p> <p>7.2.1.1 Lagrangean Formulation 174</p> <p>7.2.1.2 Eulerian Formulation 176</p> <p>7.2.1.3 Arbitrary Lagrangean- Eulerian Coupling (ALE-Formulation) 177</p> <p>7.2.2 Particle Based Methods 179</p> <p>7.2.2.1 Smooth Particle Hydrodynamics Method 180</p> <p>7.2.2.2 Discrete Element Method 183</p> <p>7.2.3 Meshless Methods 185</p> & l.