Cargando…

Probabilistic finite element model updating using Bayesian statistics : applications to aeronautical and mechanical engineering /

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model base...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Marwala, Tshilidzi, 1971- (Autor), Boulkaibet, Ilyes, 1981- (Autor), Adhikari, Sondipon (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, UK : John Wiley & Sons, 2016.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Title Page ; Copyright; Contents; Acknowledgements; Nomenclature ; Chapter 1 Introduction to Finite Element Model Updating ; 1.1 Introduction; 1.2 Finite Element Modelling; 1.3 Vibration Analysis; 1.3.1 Modal Domain Data; 1.3.2 Frequency Domain Data; 1.4 Finite Element Model Updating; 1.5 Finite Element Model Updating and Bounded Rationality; 1.6 Finite Element Model Updating Methods; 1.6.1 Direct Methods; 1.6.2 Iterative Methods; 1.6.3 Artificial Intelligence Methods; 1.6.4 Uncertainty Quantification Methods; 1.7 Bayesian Approach versus Maximum Likelihood Method; 1.8 Outline of the Book.
  • Chapter 3 Bayesian Statistics in Structural Dynamics 3.1 Introduction; 3.2 Bayes ́Rule; 3.3 Maximum Likelihood Method; 3.4 Maximum a Posteriori Parameter Estimates; 3.5 Laplaceś Method; 3.6 Prior, Likelihood and Posterior Function of a Simple Dynamic Example; 3.6.1 Likelihood Function; 3.6.2 Prior Function; 3.6.3 Posterior Function; 3.6.4 Gaussian Approximation; 3.7 The Posterior Approximation; 3.7.1 Objective Function; 3.7.2 Optimisation Approach; 3.7.3 Case Example; 3.8 Sampling Approaches for Estimating Posterior Distribution; 3.8.1 Monte Carlo Method.
  • 3.8.2 Markov Chain Monte Carlo Method3.8.3 Simulated Annealing; 3.8.4 Gibbs Sampling; 3.9 Comparison between Approaches; 3.9.1 Numerical Example; 3.10 Conclusions; References; Chapter 4 Metropolis-Hastings and Slice Sampling for Finite Element Updating ; 4.1 Introduction; 4.2 Likelihood, Prior and the Posterior Functions; 4.3 The Metropolis-Hastings Algorithm; 4.4 The Slice Sampling Algorithm; 4.5 Statistical Measures; 4.6 Application 1: Cantilevered Beam; 4.7 Application 2: Asymmetrical H-Shaped Structure; 4.8 Conclusions; References.
  • Chapter 5 Dynamically Weighted Importance Sampling for Finite Element Updating 5.1 Introduction; 5.2 Bayesian Modelling Approach; 5.3 Metropolis-Hastings (M-H) Algorithm; 5.4 Importance Sampling; 5.5 Dynamically Weighted Importance Sampling; 5.5.1 Markov Chain; 5.5.2 Adaptive Pruned-Enriched Population Control Scheme; 5.5.3 Monte Carlo Dynamically Weighted Importance Sampling; 5.6 Application 1: Cantilevered Beam; 5.7 Application 2: H-Shaped Structure; 5.8 Conclusions; References; Chapter 6 Adaptive Metropolis-Hastings for Finite Element Updating ; 6.1 Introduction.