Cargando…

Noncompact Semisimple Lie Algebras and Groups /

With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dobrev, V. K. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin/Boston : De Gruyter, 2016.
Colección:De Gruyter studies in mathematical physics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn959150635
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|||||||||
008 160924t20162016gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCO  |d IDEBK  |d STF  |d COO  |d OCLCF  |d FEM  |d OCLCQ  |d UPM  |d MERUC  |d ZCU  |d YDX  |d OCLCQ  |d ICG  |d OCLCQ  |d TKN  |d OCLCQ  |d OCLCA  |d LEAUB  |d DKC  |d AU@  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AAA  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 966184591  |a 968040923  |a 969010931  |a 994472608  |a 994507412 
020 |a 9783110427646  |q (pdf) 
020 |a 3110427648  |q (pdf) 
020 |a 9783110427806  |q (epub) 
020 |a 311042780X  |q (epub) 
020 |z 9783110435429 
020 |z 9783110427653 
020 |z 3110427656 
020 |z 311043542X 
035 |a (OCoLC)959150635  |z (OCoLC)966184591  |z (OCoLC)968040923  |z (OCoLC)969010931  |z (OCoLC)994472608  |z (OCoLC)994507412 
037 |a 5679903205471067634  |b TotalBoox  |f Ebook only  |n www.totalboox.com 
050 4 |a QC20.7.L54D63 2016 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.482 
049 |a UAMI 
100 1 |a Dobrev, V. K.,  |e author. 
245 1 0 |a Noncompact Semisimple Lie Algebras and Groups /  |c Vladimir K. Dobrev. 
264 1 |a Berlin/Boston :  |b De Gruyter,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (408 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a De Gruyter studies in mathematical physics,  |x 2194-3532 ;  |v volume 35 
588 0 |a Online resource; title from PDF title page (De Gruyter, viewed October 17, 2016). 
504 |a Includes bibliographical references (pages 375-401) and index. 
505 0 |a 1 Introduction ; 1.1 Symmetries ; 1.2 Invariant Differential Operators ; 1.3 Sketch of Procedure ; 1.4 Organization of the Book ; 2 Lie Algebras and Groups ; 2.1 Generalities on Lie Algebras ; 2.1.1 Lie Algebras ; 2.1.2 Subalgebras, Ideals, and Factor-Algebras. 
505 8 |a 2.1.3 Representations 2.1.4 Solvable Lie Algebras ; 2.1.5 Nilpotent Lie Algebras ; 2.1.6 Semisimple Lie Algebras ; 2.1.7 Examples ; 2.2 Elements of Group Theory ; 2.2.1 Definition of a Group ; 2.2.2 Group Actions ; 2.2.3 Subgroups and Factor-Groups ; 2.2.4 Homomorphisms. 
505 8 |a 2.2.5 Direct and Semidirect Products of Groups 2.3 Structure of Semisimple Lie Algebras ; 2.3.1 Cartan Subalgebra ; 2.3.2 Lemmas on Root Systems ; 2.3.3 Weyl Group ; 2.3.4 Cartan Matrix ; 2.4 Classification of Kac-Moody Algebras ; 2.5 Realization of Semisimple Lie Algebras. 
505 8 |a 2.5.1 Special Linear Algebra 2.5.2 Odd Orthogonal Lie Algebra ; 2.5.3 Symplectic Lie Algebra ; 2.5.4 Even Orthogonal Lie Algebra ; 2.5.5 Exceptional Lie Algebra G2 ; 2.5.6 Exceptional Lie Algebra F4 ; 2.5.7 Exceptional Lie Algebras El ; 2.6 Realization of Affine Kac-Moody Algebras. 
505 8 |a 2.6.1 Realization of Affine Type 1 Kac-Moody Algebras 2.6.2 Realization of Affine Type 2 and 3 Kac-Moody Algebras ; 2.6.3 Root System for the Algebras AFF 2 & 3 ; 2.7 Chevalley Generators, Serre Relations, and Cartan-Weyl Basis ; 2.8 Highest Weight Representations of Kac-Moody Algebras. 
500 |a 2.9 Verma Modules. 
520 |a With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Semisimple Lie groups. 
650 0 |a Lie algebras. 
650 6 |a Groupes de Lie semi-simples. 
650 6 |a Algèbres de Lie. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Lie algebras  |2 fast 
650 7 |a Semisimple Lie groups  |2 fast 
655 0 |a Mathematics; Physics. 
655 4 |a Mathematics; Physics. 
758 |i has work:  |a Noncompact Semisimple Lie Algebras and Groups (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGHqJFgvtyrPCP3cfMtRDm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dobrev, Vladimir K.  |t Noncompact Semisimple Lie Algebras and Groups.  |d Berlin/Boston : De Gruyter, ©2016  |z 9783110435429 
830 0 |a De Gruyter studies in mathematical physics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4691437  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30621551 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31789758 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4691437 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34465649 
938 |a YBP Library Services  |b YANK  |n 12253354 
938 |a YBP Library Services  |b YANK  |n 13157276 
994 |a 92  |b IZTAP