|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
EBOOKCENTRAL_ocn958560854 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
160917s1996 nyu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d YDX
|d OCLCQ
|d LOA
|d OCLCO
|d OCLCF
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 968469955
|a 1338699646
|
020 |
|
|
|a 9781461207115
|
020 |
|
|
|a 1461207118
|
020 |
|
|
|z 146126877X
|
020 |
|
|
|z 9781461268772
|
035 |
|
|
|a (OCoLC)958560854
|z (OCoLC)968469955
|z (OCoLC)1338699646
|
050 |
|
4 |
|a Q327
|b .D487 1996
|
082 |
0 |
4 |
|a 003.52015192
|2 20
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Devroye, Luc.
|
245 |
1 |
0 |
|a Probabilistic Theory of Pattern Recognition.
|
250 |
|
|
|a N.
|
260 |
|
|
|a New York :
|b Springer New York,
|c 1996.
|
300 |
|
|
|a 1 online resource (631 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a A Probabilistic Theory of Pattern Recognition; Editor's page; A Probabilistic Theory of Pattern Recognition; Copyright; Preface; Contents; 1 Introduction; 2 The Bayes Error; 3 Inequalities and Alternate Distance Measures; 4 Linear Discrimination; 5 Nearest Neighbor Rules; 6 Consistency; 7 Slow Rates of Convergence; 8 Error Estimation; 9 The Regular Histogram Rule; 10 Kernel Rules; 11 Consistency of the k-Nearest Neighbor Rule; 12 Vapnik -Chervonenkis Theory; 13 Combinatorial Aspects of Vapnik -Chervonenkis Theory; 14 Lower Bounds for Empirical Classifier Selection.
|
505 |
8 |
|
|a 15 The Maximum Likelihood Principle16 Parametric Classification; 17 Generalized Linear Discrimination; 18 Complexity Regularization; 19 Condensed and Edited Nearest Neighbor Rules; 20 Tree Classifiers; 21 Data- Dependent Partitioning; 22 Splitting the Data; 23 The Resubstitution Estimate; 24 Deleted Estimates of the Error Probability; 25 Automatic Kernel Rules; 26 Automatic Nearest Neighbor Rules; 27 Hypercubes and Discrete Spaces; 28 Epsilon Entropy and Totally Bounded Sets; 29 Uniform Laws of Large Numbers; 30 Neural Networks; 31 Other Error Estimates; 32 Feature Extraction; Appendix.
|
505 |
8 |
|
|a NotationReferences; Author Index; Subject Index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Pattern perception.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
2 |
|a Probability
|
650 |
|
6 |
|a Perception des structures.
|
650 |
|
6 |
|a Probabilités.
|
650 |
|
7 |
|a probability.
|2 aat
|
650 |
|
7 |
|a Pattern perception
|2 fast
|
650 |
|
7 |
|a Probabilities
|2 fast
|
700 |
1 |
|
|a Karatzas, I.
|
700 |
1 |
|
|a Yor, M.
|
776 |
0 |
8 |
|i Print version:
|a Devroye, Luc.
|t Probabilistic Theory of Pattern Recognition.
|d New York : Springer New York, ©1996
|z 9781461268772
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3074637
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3074637
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13338032
|
994 |
|
|
|a 92
|b IZTAP
|