N-gons.
This book, a translation of the German volume€ n-Ecke, presents an elegant geometric theory which, starting from quite elementary geometrical observations, exhibits an interesting connection between geometry and fundamental ideas of modern algebra.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Toronto :
University of Toronto Press,
1975.
|
Colección: | Heritage.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 3 A special case of idempotent-transfer
- 4 Ideals and divisibility in a principal ideal domain
- 5 Residue class rings of principal ideal domains
- 6 Residue class rings as sums of residue class rings
- 8 Boolean algebras of the w-gonal theory I
- 1 The Boolean algebras L₁-L₅
- 2 Divisors of x[sup(n)]
- 1 and cyclic classes
- 3 Spectrum
- 4 Examples of defining cyclic classes by divisors of xⁿ -1
- 9 Boolean algebras of the n-gonal theory II
- 1 Galois correspondence of annihilators and kernels
- 2 Ideal-transfer
- 3 Second proof of the main theorem: Main diagram
- 4 Graduation: Degree of freedom of a cyclic class
- 5 Miscellaneous exercises
- PART IV: Atomic decompositions
- 10 Rational components of an n-gon
- 1 Q-regular n-gons
- 2 Cyclic classes defined by cyclotomic polynomials
- 3 Rational components of an n-gon
- 4 The Boolean algebra generated by omitting averaging projections and its atoms
- 5 Construction of the rational components of an n-gon
- 11 Complex components of an n-gon
- 1 w-n-gons, regular n-gons
- 2 The case of the complex field
- 3 Complex components of an n-gon
- 12 The real components of an n-gon
- 1 Anticyclic cyclic classes
- 2 A special type of cyclic systems of equations
- 3 Affinely regular n-gons
- 4 Three extreme cases for the Boolean algebra of cyclic n-gonal classes
- 5 Real components of an n-gon
- Appendices
- 1 Lattices
- 2 Cyclotomic polynomials
- List of symbols and notations
- Index
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- V
- W
- X
- Y
- Z.