Cargando…

Differential and Riemannian Manifolds.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lang, Serge
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Springer New York, 1995.
Edición:N.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBOOKCENTRAL_ocn958525799
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 160917s1995 nyu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d LIP  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781461241829 
020 |a 1461241820 
035 |a (OCoLC)958525799 
050 4 |a QA39.2  |b .L364 1995 
082 0 4 |a 510  |2 23 
049 |a UAMI 
100 1 |a Lang, Serge. 
245 1 0 |a Differential and Riemannian Manifolds. 
250 |a N. 
260 |a New York :  |b Springer New York,  |c 1995. 
300 |a 1 online resource (375 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Graduate Texts in Mathematics; Differential and Riemannian Manifolds; Copyright; Preface; Contents; CHAPTER I Differential Calculus; CHAPTER II Manifolds; CHAPTER III Vector Bundles; CHAPTER IV Vector Fields and Differential Equations; CHAPTER V Operations on Vector Fields and Differential Forms; CHAPTER VI The Theorem of Frobenius; CHAPTER VII Metrics; CHAPTER VIII Covariant Derivatives and Geodesics; CHAPTER IX Curvature; CHAPTER X Volume Forms; CHAPTER XI Integration of Differential Forms; CHAPTER XII Stokes' Theorem; CHAPTER XIII Applications of Stokes' Theorem. 
505 8 |a APPENDIX The Spectral TheoremBibliography; Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Global analysis (Mathematics) 
650 0 |a Algebraic topology. 
650 0 |a Mathematics. 
650 6 |a Analyse globale (Mathématiques) 
650 6 |a Topologie algébrique. 
650 6 |a Mathématiques. 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a Algebraic topology  |2 fast 
650 7 |a Global analysis (Mathematics)  |2 fast 
650 7 |a Mathematics  |2 fast 
776 0 8 |i Print version:  |a Lang, Serge.  |t Differential and Riemannian Manifolds.  |d New York : Springer New York, ©1995  |z 9781461286882 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3075917  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3075917 
994 |a 92  |b IZTAP