Chargement en cours…

First Course in Real Analysis.

Détails bibliographiques
Cote:Libro Electrónico
Auteur principal: Axler, S.
Autres auteurs: Gehring, F. W., Ribet, K. A.
Format: Électronique eBook
Langue:Inglés
Publié: New York : Springer New York, 1991.
Édition:N.
Sujets:
Accès en ligne:Texto completo
Table des matières:
  • Undergraduate Texts in Mathematics; A First Course in Real Analysis; Copyright; Preface to the Second Edition; Preface to the First Edition; Contents; CHAPTER 1 The Real Number System ; CHAPTER 2 Continuity and Limits ; CHAPTER 3 Basic Properties of Functions on R1 ; CHAPTER 4 Elementary Theory of Differentiation ; CHAPTER 5 Elementary Theory of Integration ; CHAPTER 6 Elementary Theory of Metric Spaces ; CHAPTER 7 Differentiation in RN ; CHAPTER 8 Integration in RN; CHAPTER 9 Infinite Sequences and Infinite Series ; CHAPTER 10 Fourier Series ; CHAPTER 11 Functions Defined by Integrals.
  • Improper Integrals CHAPTER 12 The Riemann-Stieltjes Integral and Functions of Bounded Variation ; CHAPTER 13 Contraction Mappings, Newton's Method, and Differential Equations ; CHAPTER 14 Implicit Function Theorems and Lagrange Multipliers ; CHAPTER 15 Functions on Metric Spaces; Approximation ; CHAPTER 16 Vector Field Theory; the Theorems of Green and Stokes ; Appendixes; Answers to Odd-Numbered Problems; Index.