Cargando…

Benefits of Bayesian network models.

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weber, Philippe (Co-author of Data uncertainty and important measures) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley-ISTE, 2016.
Colección:Systems and industrial engineering series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn957655787
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 160902s2016 nju ob 001 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d NLE  |d EBLCP  |d DG1  |d RECBK  |d N$T  |d OCLCF  |d DG1  |d OCLCQ  |d IDEBK  |d UPM  |d STF  |d DG1  |d YDX  |d VGM  |d OTZ  |d OCLCQ  |d CCO  |d K6U  |d MERUC  |d LOA  |d COCUF  |d ZCU  |d ICG  |d OCLCQ  |d WRM  |d KSU  |d OCLCQ  |d U3W  |d OCLCQ  |d ESU  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AKR  |d OCLCO  |d OCLCL 
019 |a 957524986  |a 960029522  |a 960030149 
020 |a 9781119347316  |q (electronic bk.) 
020 |a 1119347319  |q (electronic bk.) 
020 |a 1119347459  |q (electronic bk.) 
020 |a 9781119347453  |q (electronic bk.) 
020 |z 184821992X 
020 |z 1119347440 
020 |z 9781119347446 
020 |z 9781848219922 
029 1 |a AU@  |b 000061349460 
029 1 |a CHBIS  |b 011150587 
029 1 |a CHBIS  |b 011278923 
029 1 |a CHNEW  |b 000945622 
029 1 |a CHVBK  |b 480257825 
029 1 |a DEBSZ  |b 485069342 
029 1 |a GBVCP  |b 1002765803 
035 |a (OCoLC)957655787  |z (OCoLC)957524986  |z (OCoLC)960029522  |z (OCoLC)960030149 
037 |a 950696  |b MIL 
050 4 |a QA279.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
100 1 |a Weber, Philippe  |c (Co-author of Data uncertainty and important measures),  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjtJG7hGF74Xc7WPq7MrRq 
245 1 0 |a Benefits of Bayesian network models. 
260 |a Hoboken, NJ :  |b Wiley-ISTE,  |c 2016. 
300 |a 1 online resource (151) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Systems and industrial engineering series 
490 1 |a Systems dependability assessment set ;  |v volume 2 
588 0 |a Print version record. 
505 0 |a Cover ; Title Page ; Copyright ; Contents; Foreword by J.-F. Aubry; Foreword by L. Portinale; Acknowledgments; Introduction; I.1. Problem statement; I.2. Book structure; PART 1. Bayesian Networks; 1. Bayesian Networks: a Modeling Formalism for System Dependability; 1.1. Probabilistic graphical models: BN; 1.1.1. BN: a formalism to model dependability; 1.1.2. Inference mechanism; 1.2. Reliability and joint probability distributions; 1.2.1. Multi-state system example; 1.2.2. Joint distribution; 1.2.3. Reliability computing; 1.2.4. Factorization; 1.3. Discussion and conclusion. 
505 8 |a 2. Bayesian Network: Modeling Formalism of the Structure Function of Boolean Systems2.1. Introduction; 2.2. BN models in the Boolean case; 2.2.1. BN model from cut-sets; 2.2.2. BN model from tie-sets; 2.2.3. BN model from a top-down approach; 2.2.4. BN model of a bowtie; 2.3. Standard Boolean gates CPT; 2.4. Non-deterministic CPT; 2.5. Industrial applications; 2.6. Conclusion; 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems; 3.1. Introduction; 3.2. BN models in the multi-state case; 3.2.1. BN model of multi-state systems from tie-sets. 
505 8 |a 3.2.2. BN model of multi-state systems from cut-sets3.2.3. BN model of multi-state systems from functional and dysfunctional analysis; 3.3. Non-deterministic CPT; 3.4. Industrial applications; 3.5. Conclusion; PART 2. Dynamic Bayesian Networks; 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation; 4.1. Introduction; 4.2. Component modeled by a DBN; 4.2.1. DBN model of a MC; 4.2.2. DBN model of non-homogeneous MC; 4.2.3. Stochastic process with exogenous constraint; 4.3. Model of a dynamic multi-state system. 
505 8 |a 4.4. Discussion on dependent processes4.5. Conclusion; 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System; 5.1. Introduction; 5.2. Integrating reliability information into the control; 5.3. Control integrating reliability modeled by DBN; 5.3.1. Modeling and controlling an over-actuated system; 5.3.2. Integrating reliability; 5.4. Application to a drinking water network; 5.4.1. DBN modeling; 5.4.2. Results and discussion; 5.5. Conclusion; 5.6. Acknowledgments; Conclusion; Modeling the functional consequences of failures from structured knowledge. 
505 8 |a Dynamic modeling system reliability based on the reliability of components from the environmentSynthesis of the control law with the aim of optimizing system reliability based on its sensitivity to actuator failures; Bibliography; Index; Other titles from iSTE in Systems and Industrial Engineering -- Robotics; EULA. 
520 |a The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts. The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty. This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems. Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Mathematical models. 
650 2 |a Models, Theoretical 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Modèles mathématiques. 
650 7 |a mathematical models.  |2 aat 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Mathematical models  |2 fast 
758 |i has work:  |a Benefits of Bayesian networks models (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGQbPTfMWCHQk7mghpTfYK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
830 0 |a Systems and industrial engineering series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4658585  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31375488 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4658585 
938 |a EBSCOhost  |b EBSC  |n 1342627 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis35385803 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00685850 
938 |a YBP Library Services  |b YANK  |n 13140085 
938 |a YBP Library Services  |b YANK  |n 13187441 
994 |a 92  |b IZTAP