Cargando…

Ultra low power electronics and adiabatic solutions /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fanet, Hervé (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2016.
Colección:Electronics engineering series (London, England)
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Introduction
  • 1. Dissipation Sources in Electronic Circuits
  • 1.1. Brief description of logic types
  • 1.1.1. Boolean logic
  • 1.1.2. Combinational and sequential logic
  • 1.1.3. NMOS and PMOS transistors
  • 1.1.4. Complementary CMOS logic
  • 1.1.5. Pass-transistor logic
  • 1.1.6. Dynamic logic
  • 1.2. Origins of heat dissipation in circuits
  • 1.2.1. Joule effect in circuits
  • 1.2.2. Calculating dynamic power
  • 1.2.3. Calculating static power and its origins
  • 2. Thermodynamics and Information Theory
  • 2.1. Recalling the basics: entropy and information
  • 2.1.1. Statistical definition of entropy
  • 2.1.2. Macroscopic energy and entropy
  • 2.1.3. Thermostat exchange, Boltzmann's law and the equal division of energy
  • 2.1.4. Summary and example of energy production in a conductor carrying a current
  • 2.1.5. Information and the associated entropy
  • 2.2. Presenting Landauer's principle
  • 2.2.1. Presenting Landauer's principle and other examples
  • 2.2.2. Experimental validations of Landauer's principle
  • 2.3. Adiabaticity and reversibility
  • 2.3.1. Adiabatic principle of charging capacitors
  • 2.3.2. Adiabaticity and reversibility: a circuit approach
  • 3. Transistor Models in CMOS Technology
  • 3.1. Reminder on semiconductor properties
  • 3.1.1. State densities and semiconductor properties
  • 3.1.2. Currents in a semiconductor
  • 3.1.3. Contact potentials
  • 3.1.4. Metal-oxide semiconductor structure
  • 3.1.5. Weak and strong inversion
  • 3.2. Long- and short-channel static models
  • 3.2.1. Basic principle and brief history of semiconductor technology
  • 3.2.2. Transistor architecture and Fermi pseudo-potentials
  • 3.2.3. Calculating the current in a long-channel static regime
  • 3.2.4. Calculating the current in a short-channel regime
  • 3.3. Dynamic transistor models.
  • 3.3.1. Quasi-static regime
  • 3.3.2. Dynamic regime
  • 3.3.3. "Small signals" transistor model
  • 4. Practical and Theoretical Limits of CMOS Technology
  • 4.1. Speed-dissipation trade-off and limits of CMOS technology
  • 4.1.1. From the transistor to the integrated circuit
  • 4.1.2. Trade-off between speed and consumption
  • 4.1.3. The trade-off between dynamic consumption and static consumption
  • 4.2. Sub-threshold regimes
  • 4.2.1. Recall of the weak inversion properties
  • 4.2.2. Limits to sub-threshold CMOS technology
  • 4.3. Practical and theoretical limits in CMOS technology
  • 4.3.1. Economic considerations and evolving methodologies
  • 4.3.2. Technological difficulties: dissipation, variability and interconnects
  • 4.3.3. Theoretical limits and open questions
  • 5. Very Low Consumption at System Level
  • 5.1. The evolution of power management technologies
  • 5.1.1. Basic techniques for reducing dynamic power
  • 5.1.2. Basic techniques for reducing static power
  • 5.1.3. Designing in 90, 65 and 45 nm technology
  • 5.2. Sub-threshold integrated circuits
  • 5.2.1. Sub-threshold circuit features
  • 5.2.2. Pipeline and parallelization
  • 5.2.3. New SRAM structure
  • 5.3. Near-threshold circuits
  • 5.3.1. Optimization method
  • 5.4. Chip interconnect and networks
  • 5.4.1. Dissipation in the interconnect
  • 5.4.2. Techniques for reducing dissipation in the interconnect
  • 6. Reversible Computing and Quantum Computing
  • 6.1. The basis for reversible computing
  • 6.1.1. Introduction
  • 6.1.2. Group structure of reversible gates
  • 6.1.3. Conservative gates, linearity and affinity
  • 6.1.4. Exchange gates
  • 6.1.5. Control gates
  • 6.1.6. Two basic theorems: "no fan-out" and "no cloning"
  • 6.2. A few elements for synthesizing a function
  • 6.2.1. The problem and constraints on synthesis
  • 6.2.2. Synthesizing a reversible function.
  • 6.2.3. Synthesizing an irreversible function
  • 6.2.4. The adder example
  • 6.2.5. Hardware implementation of reversible gates
  • 6.3. Reversible computing and quantum computing
  • 6.3.1. Principles of quantum computing
  • 6.3.2. Entanglement
  • 6.3.3. A few examples of quantum gates
  • 6.3.4. The example of Grover's algorithm
  • 7. Quasi-adiabatic CMOS Circuits
  • 7.1. Adiabatic logic gates in CMOS
  • 7.1.1. Implementing the principles of optimal charge and adiabatic pipeline
  • 7.1.2. ECRL and PFAL in CMOS
  • 7.1.3. Comparison to other gate technologies
  • 7.2. Calculation of dissipation in an adiabatic circuit
  • 7.2.1. Calculation in the normal regime
  • 7.2.2. Calculation in sub-threshold regimes
  • 7.3. Energy-recovery supplies and their contribution to dissipation
  • 7.3.1. Capacitor-based supply
  • 7.3.2. Inductance-based supply
  • 7.4. Adiabatic arithmetic architecture
  • 7.4.1. Basic principles
  • 7.4.2. Adder example
  • 7.4.3. The interest in complex gates
  • 8. Micro-relay Based Technology
  • 8.1. The physics of micro-relays
  • 8.1.1. Different computing technologies
  • 8.1.2. Different actuation technologies
  • 8.1.3. Dynamic modeling of micro-electro-mechanical relays
  • 8.1.4. Implementation examples and technological difficulties
  • 8.2. Calculation of dissipation in a micro-relay based circuit
  • 8.2.1. Optimization of micro-relays through electrostatic actuati
  • 8.2.2. Adiabatic regime solutions
  • 8.2.3. Comparison between CMOS logic and micro-relays
  • Bibliography
  • Index
  • Other titles from iSTE in Electronics Engineering
  • EULA.