Chargement en cours…

Understanding and modeling Förster-type resonance energy transfer (FRET) : introduction to FRET. Vol. 1 /

This Brief presents a historical overview of the Förster-type nonradiative energy transfer and a compilation of important progress in FRET research, starting from Förster until today, along with a summary of the current state-of-the-art. Here the objective is to provide the reader with a complete...

Description complète

Détails bibliographiques
Cote:Libro Electrónico
Auteurs principaux: Govorov, Alexander (Auteur), Martínez, Pedro Ludwig Hernández (Auteur), Demir, Hilmi Volkan (Auteur)
Format: Électronique eBook
Langue:Inglés
Publié: Singapore : Springer, 2016.
Collection:SpringerBriefs in applied sciences and technology. Nanoscience and nanotechnology.
Sujets:
Accès en ligne:Texto completo
Table des matières:
  • 1 Short History of Energy Transfer Theory Before Förster, At The Time of Förster, and After Förster; 1.1 Brief Review of Scientific Achievements Before Förster Theory; 1.2 Förster Energy Transfer Theory; 1.3 Developments After Förster; References; 2 Energy Transfer Review; 2.1 Introduction; 2.2 Classical Description of Energy Transfer; 2.3 Quantum Mechanical Description of Energy Transfer; 2.4 Radiative and Nonradiative Energy Transfer; 2.4.1 Radiative Energy Transfer; 2.4.2 Nonradiative Energy Transfer; References; 3 Förster-Type Nonradiative Energy Transfer Models.
  • 3.1 Nonradiative Energy Transfer3.2 Dexter Energy Transfer, Charge Transfer, Exciton Diffusion and Dissociation; 3.3 Selection Rules for Enery Transfer; 3.3.1 Dipole-Dipole Mechanism; 3.3.2 Exchange Mechanism; References; 4 Background Theory; 4.1 Quantum Cofinement; 4.1.1 Three Dimensional Cartesian Coordinates; 4.1.2 The Box Potential; 4.1.2.1 The Rectangular Box Potential; 4.1.2.2 The Cubic Box Potential; 4.1.3 Three Dimensional Spherical Coordinates; 4.1.3.1 Free Particle in Spherical Coordinates; 4.1.3.2 The Spherical Well; 4.1.4 Three Dimensional Cylindrical Coordinates.
  • 4.2 Fermi's Golden RuleReferences; 5 Theoretical Approaches: Exciton Theory, Coulomb Interactions and Fluctuation-Dissipation Theorem; 5.1 Electron-Hole Interaction (Exciton); 5.1.1 Frenkel Excitons; 5.1.2 Mott-Wannier Excitons; 5.2 Coulombic Interaction; 5.3 Exciton in Quantum Dots: Single-Particle Quantization Energy and Coulomb Interaction; 5.4 Fermi's Golden Rule and Fluctuation Dissipation Theorem; References; Förster Resonance Energy Transfer: Dipole-Dipole Mechanism; Dexter Energy Transfer: Exchange Mechanism.