|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn956633781 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160812t20162016riua ob 000 0 eng |
010 |
|
|
|a 2016037506
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d OCLCO
|d BTCTA
|d COD
|d COO
|d UIU
|d OCLCF
|d GZM
|d OCLCA
|d YDX
|d EBLCP
|d IDB
|d OCLCQ
|d LEAUB
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1086548028
|a 1262680834
|
020 |
|
|
|a 9781470435080
|q (online)
|
020 |
|
|
|a 147043508X
|q (online)
|
020 |
|
|
|z 9781470420253
|q (alk. paper)
|
020 |
|
|
|z 1470420252
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000058531835
|
029 |
1 |
|
|a AU@
|b 000069669354
|
029 |
1 |
|
|a DKDLA
|b 800010-katalog:99122975588305763
|
029 |
1 |
|
|a AU@
|b 000069423979
|
035 |
|
|
|a (OCoLC)956633781
|z (OCoLC)1086548028
|z (OCoLC)1262680834
|
042 |
|
|
|a pcc
|
050 |
1 |
0 |
|a QA161.F3
|
082 |
0 |
0 |
|a 512.9/23
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Csaba, Béla,
|d 1968-
|e author.
|
245 |
1 |
0 |
|a Proof of the 1-factorization and Hamilton decomposition conjectures /
|c Béla Csaba, Daniela Kühn, Allan Lo, Deryk Osthus, Andrew Treglown.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2016.
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource (v, 164 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 244, number 1154
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 244, Number 1154 (third of 4 numbers), November 2016."
|
504 |
|
|
|a Includes bibliographical references (pages 163-164).
|
520 |
3 |
|
|a "In this paper we provide a unified approach towards proving three long-standing conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture, which can be formulated as an edge colouring problem; secondly, the Hamilton decomposition conjecture, which provides a far-reaching generalization of Walecki's result [26] that every complete graph of odd order has a Hamilton decomposition and thirdly, a best possible result on packing edge-disjoint Hamilton cycles in Dirac graphs. The latter two problems were raised by Nash-Williams [28-30] in 1970"--Page 1
|
505 |
0 |
|
|a Introduction -- The two cliques case -- Exceptional systems for the two cliques case -- The bipartite case -- Approximate decompositions -- Bibliography.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Factorization (Mathematics)
|
650 |
|
0 |
|a Decomposition (Mathematics)
|
650 |
|
6 |
|a Factorisation.
|
650 |
|
6 |
|a Décomposition (Mathématiques)
|
650 |
|
7 |
|a Decomposition (Mathematics)
|2 fast
|
650 |
|
7 |
|a Factorization (Mathematics)
|2 fast
|
700 |
1 |
|
|a Kuhn, Daniela,
|e author.
|
700 |
1 |
|
|a Lo, Allan,
|e author.
|
700 |
1 |
|
|a Osthus, Deryk,
|e author.
|
700 |
1 |
|
|a Treglown, Andrew,
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Proof of the 1-factorization and Hamilton decomposition conjectures (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGB4KBmvbdhbVVWWgJyhf3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Proof of the 1-factorization and Hamilton decomposition conjectures.
|d Providence, Rhode Island : American Mathematical Society, 2016
|z 9781470420253
|w (DLC) 2016031065
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1154.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901873
|z Texto completo
|
938 |
|
|
|a Baker and Taylor
|b BTCP
|n BK0019365185
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4901873
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14681456
|
994 |
|
|
|a 92
|b IZTAP
|