Cargando…

Proof of the 1-factorization and Hamilton decomposition conjectures /

"In this paper we provide a unified approach towards proving three long-standing conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture, which can be formulated as an edge colouring problem; secondly, the Hamilton decomposition conjecture, which provides a far-re...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Csaba, Béla, 1968- (Autor), Kuhn, Daniela (Autor), Lo, Allan (Autor), Osthus, Deryk (Autor), Treglown, Andrew (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1154.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn956633781
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 160812t20162016riua ob 000 0 eng
010 |a  2016037506 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d BTCTA  |d COD  |d COO  |d UIU  |d OCLCF  |d GZM  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1086548028  |a 1262680834 
020 |a 9781470435080  |q (online) 
020 |a 147043508X  |q (online) 
020 |z 9781470420253  |q (alk. paper) 
020 |z 1470420252  |q (alk. paper) 
029 1 |a AU@  |b 000058531835 
029 1 |a AU@  |b 000069669354 
029 1 |a DKDLA  |b 800010-katalog:99122975588305763 
029 1 |a AU@  |b 000069423979 
035 |a (OCoLC)956633781  |z (OCoLC)1086548028  |z (OCoLC)1262680834 
042 |a pcc 
050 1 0 |a QA161.F3 
082 0 0 |a 512.9/23  |2 23 
049 |a UAMI 
100 1 |a Csaba, Béla,  |d 1968-  |e author. 
245 1 0 |a Proof of the 1-factorization and Hamilton decomposition conjectures /  |c Béla Csaba, Daniela Kühn, Allan Lo, Deryk Osthus, Andrew Treglown. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (v, 164 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 244, number 1154 
588 0 |a Print version record. 
500 |a "Volume 244, Number 1154 (third of 4 numbers), November 2016." 
504 |a Includes bibliographical references (pages 163-164). 
520 3 |a "In this paper we provide a unified approach towards proving three long-standing conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture, which can be formulated as an edge colouring problem; secondly, the Hamilton decomposition conjecture, which provides a far-reaching generalization of Walecki's result [26] that every complete graph of odd order has a Hamilton decomposition and thirdly, a best possible result on packing edge-disjoint Hamilton cycles in Dirac graphs. The latter two problems were raised by Nash-Williams [28-30] in 1970"--Page 1 
505 0 |a Introduction -- The two cliques case -- Exceptional systems for the two cliques case -- The bipartite case -- Approximate decompositions -- Bibliography. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Factorization (Mathematics) 
650 0 |a Decomposition (Mathematics) 
650 6 |a Factorisation. 
650 6 |a Décomposition (Mathématiques) 
650 7 |a Decomposition (Mathematics)  |2 fast 
650 7 |a Factorization (Mathematics)  |2 fast 
700 1 |a Kuhn, Daniela,  |e author. 
700 1 |a Lo, Allan,  |e author. 
700 1 |a Osthus, Deryk,  |e author. 
700 1 |a Treglown, Andrew,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Proof of the 1-factorization and Hamilton decomposition conjectures (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGB4KBmvbdhbVVWWgJyhf3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Proof of the 1-factorization and Hamilton decomposition conjectures.  |d Providence, Rhode Island : American Mathematical Society, 2016  |z 9781470420253  |w (DLC) 2016031065 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1154. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901873  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0019365185 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901873 
938 |a YBP Library Services  |b YANK  |n 14681456 
994 |a 92  |b IZTAP