Cargando…

Proof of the 1-factorization and Hamilton decomposition conjectures /

"In this paper we provide a unified approach towards proving three long-standing conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture, which can be formulated as an edge colouring problem; secondly, the Hamilton decomposition conjecture, which provides a far-re...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Csaba, Béla, 1968- (Autor), Kuhn, Daniela (Autor), Lo, Allan (Autor), Osthus, Deryk (Autor), Treglown, Andrew (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1154.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:"In this paper we provide a unified approach towards proving three long-standing conjectures for all sufficiently large graphs. Firstly, the 1-factorization conjecture, which can be formulated as an edge colouring problem; secondly, the Hamilton decomposition conjecture, which provides a far-reaching generalization of Walecki's result [26] that every complete graph of odd order has a Hamilton decomposition and thirdly, a best possible result on packing edge-disjoint Hamilton cycles in Dirac graphs. The latter two problems were raised by Nash-Williams [28-30] in 1970"--Page 1
Notas:"Volume 244, Number 1154 (third of 4 numbers), November 2016."
Descripción Física:1 online resource (v, 164 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 163-164).
ISBN:9781470435080
147043508X
ISSN:0065-9266 ;