Cargando…

The abc-problem for Gabor systems /

A longstanding problem in Gabor theory is to identify time-frequency shifting lattices a\mathbb{Z}\times b\mathbb{Z} and ideal window functions \chi_I on intervals I of length c such that \{e^{-2\pi i n bt} \chi_I(t- m a):\ (m, n)\in \mathbb{Z}\times \mathbb{Z}\} are Gabor frames for the space of al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dai, Xin-Rong, 1971- (Autor), Sun, Qiyu, 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1152.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn954720119
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 160802t20162016riua ob 000 0 eng
010 |a  2016035445 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d COD  |d UIU  |d OCLCF  |d GZM  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1086520583  |a 1262670352 
020 |a 9781470435042  |q (online) 
020 |a 1470435047  |q (online) 
020 |a 1470420155  |q (alk. paper) 
020 |a 9781470420154 
020 |z 9781470420154  |q (alk. paper) 
035 |a (OCoLC)954720119  |z (OCoLC)1086520583  |z (OCoLC)1262670352 
042 |a pcc 
050 1 0 |a QC20.7.W38 
082 0 0 |a 515/.2433  |2 23 
049 |a UAMI 
100 1 |a Dai, Xin-Rong,  |d 1971-  |e author. 
245 1 4 |a The abc-problem for Gabor systems /  |c Xin-Rong Dai, Qiyu Sun. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (ix, 99 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 244, number 1152 
588 0 |a Print version record. 
500 |a "Volume 244, number 1152 (first of 4 numbers), November 2016." 
500 |a Keywords: abc problem for Gabor systems, Gabor frames, infinite matrices, piecewise linear transformation, ergodic theorem, sampling, shift-invariant spaces. 
504 |a Includes bibliographical references (pages 97-99). 
505 0 |a Introduction -- Gabor frames and infinite matrices -- Maximal invariant sets -- Piecewise linear transformations -- Maximal invariant sets with irrational time shifts -- Maximal invariant sets with rational time shifts -- The abc-problem for Gabor systems -- Appendix A. Algorithm -- Appendix B. Uniform sampling of signals in a shift-invariant space -- Bibliography. 
520 |a A longstanding problem in Gabor theory is to identify time-frequency shifting lattices a\mathbb{Z}\times b\mathbb{Z} and ideal window functions \chi_I on intervals I of length c such that \{e^{-2\pi i n bt} \chi_I(t- m a):\ (m, n)\in \mathbb{Z}\times \mathbb{Z}\} are Gabor frames for the space of all square-integrable functions on the real line. In this paper, the authors create a time-domain approach for Gabor frames, introduce novel techniques involving invariant sets of non-contractive and non-measure-preserving transformations on the line, and provide a complete answer to the above abc-pro. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Wavelets (Mathematics) 
650 0 |a Gabor transforms. 
650 0 |a Matrices. 
650 6 |a Ondelettes. 
650 6 |a Transformées de Gabor. 
650 6 |a Matrices. 
650 7 |a Gabor transforms  |2 fast 
650 7 |a Matrices  |2 fast 
650 7 |a Wavelets (Mathematics)  |2 fast 
700 1 |a Sun, Qiyu,  |d 1966-  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a The abc-problem for Gabor systems (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrVJdCrFhpXJ8g8YXtqHy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dai, Xin-Rong, 1971-  |t Abc-problem for Gabor systems.  |d Providence, Rhode Island : American Mathematical Society, 2016  |z 9781470420154  |w (DLC) 2016031123 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1152. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901871  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901871 
938 |a YBP Library Services  |b YANK  |n 14681454 
994 |a 92  |b IZTAP