|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn954720119 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
160802t20162016riua ob 000 0 eng |
010 |
|
|
|a 2016035445
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d OCLCO
|d COD
|d UIU
|d OCLCF
|d GZM
|d OCLCA
|d YDX
|d EBLCP
|d IDB
|d OCLCQ
|d LEAUB
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1086520583
|a 1262670352
|
020 |
|
|
|a 9781470435042
|q (online)
|
020 |
|
|
|a 1470435047
|q (online)
|
020 |
|
|
|a 1470420155
|q (alk. paper)
|
020 |
|
|
|a 9781470420154
|
020 |
|
|
|z 9781470420154
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)954720119
|z (OCoLC)1086520583
|z (OCoLC)1262670352
|
042 |
|
|
|a pcc
|
050 |
1 |
0 |
|a QC20.7.W38
|
082 |
0 |
0 |
|a 515/.2433
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dai, Xin-Rong,
|d 1971-
|e author.
|
245 |
1 |
4 |
|a The abc-problem for Gabor systems /
|c Xin-Rong Dai, Qiyu Sun.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2016.
|
264 |
|
4 |
|c ©2016
|
300 |
|
|
|a 1 online resource (ix, 99 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 244, number 1152
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 244, number 1152 (first of 4 numbers), November 2016."
|
500 |
|
|
|a Keywords: abc problem for Gabor systems, Gabor frames, infinite matrices, piecewise linear transformation, ergodic theorem, sampling, shift-invariant spaces.
|
504 |
|
|
|a Includes bibliographical references (pages 97-99).
|
505 |
0 |
|
|a Introduction -- Gabor frames and infinite matrices -- Maximal invariant sets -- Piecewise linear transformations -- Maximal invariant sets with irrational time shifts -- Maximal invariant sets with rational time shifts -- The abc-problem for Gabor systems -- Appendix A. Algorithm -- Appendix B. Uniform sampling of signals in a shift-invariant space -- Bibliography.
|
520 |
|
|
|a A longstanding problem in Gabor theory is to identify time-frequency shifting lattices a\mathbb{Z}\times b\mathbb{Z} and ideal window functions \chi_I on intervals I of length c such that \{e^{-2\pi i n bt} \chi_I(t- m a):\ (m, n)\in \mathbb{Z}\times \mathbb{Z}\} are Gabor frames for the space of all square-integrable functions on the real line. In this paper, the authors create a time-domain approach for Gabor frames, introduce novel techniques involving invariant sets of non-contractive and non-measure-preserving transformations on the line, and provide a complete answer to the above abc-pro.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Wavelets (Mathematics)
|
650 |
|
0 |
|a Gabor transforms.
|
650 |
|
0 |
|a Matrices.
|
650 |
|
6 |
|a Ondelettes.
|
650 |
|
6 |
|a Transformées de Gabor.
|
650 |
|
6 |
|a Matrices.
|
650 |
|
7 |
|a Gabor transforms
|2 fast
|
650 |
|
7 |
|a Matrices
|2 fast
|
650 |
|
7 |
|a Wavelets (Mathematics)
|2 fast
|
700 |
1 |
|
|a Sun, Qiyu,
|d 1966-
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a The abc-problem for Gabor systems (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGrVJdCrFhpXJ8g8YXtqHy
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Dai, Xin-Rong, 1971-
|t Abc-problem for Gabor systems.
|d Providence, Rhode Island : American Mathematical Society, 2016
|z 9781470420154
|w (DLC) 2016031123
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1152.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901871
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4901871
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14681454
|
994 |
|
|
|a 92
|b IZTAP
|