Cargando…

The abc-problem for Gabor systems /

A longstanding problem in Gabor theory is to identify time-frequency shifting lattices a\mathbb{Z}\times b\mathbb{Z} and ideal window functions \chi_I on intervals I of length c such that \{e^{-2\pi i n bt} \chi_I(t- m a):\ (m, n)\in \mathbb{Z}\times \mathbb{Z}\} are Gabor frames for the space of al...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Dai, Xin-Rong, 1971- (Autor), Sun, Qiyu, 1966- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1152.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:A longstanding problem in Gabor theory is to identify time-frequency shifting lattices a\mathbb{Z}\times b\mathbb{Z} and ideal window functions \chi_I on intervals I of length c such that \{e^{-2\pi i n bt} \chi_I(t- m a):\ (m, n)\in \mathbb{Z}\times \mathbb{Z}\} are Gabor frames for the space of all square-integrable functions on the real line. In this paper, the authors create a time-domain approach for Gabor frames, introduce novel techniques involving invariant sets of non-contractive and non-measure-preserving transformations on the line, and provide a complete answer to the above abc-pro.
Notas:"Volume 244, number 1152 (first of 4 numbers), November 2016."
Keywords: abc problem for Gabor systems, Gabor frames, infinite matrices, piecewise linear transformation, ergodic theorem, sampling, shift-invariant spaces.
Descripción Física:1 online resource (ix, 99 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 97-99).
ISBN:9781470435042
1470435047
1470420155
9781470420154
ISSN:0065-9266 ;