Cargando…

Credit risk analytics : measurement techniques, applications, and examples in SAS /

The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fund...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Baesens, Bart (Autor), Roesch, Daniel, 1968- (Autor), Scheule, Harald (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, [2016]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn954720033
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 160802s2016 nju o 001 0 eng
010 |a  2016035372 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d YDX  |d N$T  |d IDEBK  |d EBLCP  |d RECBK  |d Z@L  |d IDB  |d DG1  |d OCLCO  |d OCLCQ  |d MERUC  |d DEBSZ  |d NJR  |d UPM  |d OCLCQ  |d UAB  |d DEBBG  |d OCLCQ  |d VVB  |d OCLCQ  |d U3W  |d OCLCQ  |d OL$  |d OCLCO  |d DLC  |d OCLCQ  |d S2H  |d OCLCQ  |d LVT  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 959329206  |a 959596340  |a 1076647364  |a 1100461530  |a 1116104225  |a 1124533115  |a 1148153776  |a 1223569830  |a 1223963588 
020 |a 9781119278344  |q (pdf) 
020 |a 1119278341  |q (pdf) 
020 |a 9781119278283  |q (epub) 
020 |a 1119278287  |q (epub) 
020 |a 9781119449560 
020 |a 1119449561 
020 |a 1119143985 
020 |a 9781119143987 
020 |z 9781119143987  |q (cloth) 
029 1 |a AU@  |b 000058468698 
029 1 |a CHNEW  |b 000969157 
029 1 |a CHVBK  |b 499165683 
029 1 |a DEBSZ  |b 494213531 
029 1 |a DKDLA  |b 820120-katalog:999943536405765 
029 1 |a GBVCP  |b 101496556X 
035 |a (OCoLC)954720033  |z (OCoLC)959329206  |z (OCoLC)959596340  |z (OCoLC)1076647364  |z (OCoLC)1100461530  |z (OCoLC)1116104225  |z (OCoLC)1124533115  |z (OCoLC)1148153776  |z (OCoLC)1223569830  |z (OCoLC)1223963588 
042 |a pcc 
050 0 0 |a HG3751 
072 7 |a BUS  |x 027000  |2 bisacsh 
082 0 0 |a 332.10285/555  |2 23 
049 |a UAMI 
100 1 |a Baesens, Bart,  |e author. 
245 1 0 |a Credit risk analytics :  |b measurement techniques, applications, and examples in SAS /  |c Bart Baesens, Daniel Roesch, Harald Scheule. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c [2016] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Title Page; Copyright; Table of Contents; Dedication; Acknowledgments; About the Authors; Chapter 1: Introduction to Credit Risk Analytics; Why This Book Is Timely; The Current Regulatory Regime: Basel Regulations; Introduction to Our Data Sets; Housekeeping; Chapter 2: Introduction to SAS Software; SAS versus Open Source Software; Base SAS; SAS/STAT; Macros in Base SAS; SAS Output Delivery System (ODS); SAS/IML; SAS Studio; SAS Enterprise Miner; Other SAS Solutions for Credit Risk Management; Reference; Chapter 3: Exploratory Data Analysis; Introduction; One-Dimensional Analysis. 
505 8 |a Two-Dimensional AnalysisHighlights of Inductive Statistics; Reference; Chapter 4: Data Preprocessing for Credit Risk Modeling; Types of Data Sources; Merging Data Sources; Sampling; Types of Data Elements; Visual Data Exploration and Exploratory Statistical Analysis; Descriptive Statistics; Missing Values; Outlier Detection and Treatment; Standardizing Data; Categorization; Weights of Evidence Coding; Variable Selection; Segmentation; Default Definition; Practice Questions; Notes; References; Chapter 5: Credit Scoring; Basic Concepts; Judgmental versus Statistical Scoring. 
505 8 |a Advantages of Statistical Credit ScoringTechniques to Build Scorecards; Credit Scoring for Retail Exposures; Reject Inference; Credit Scoring for Nonretail Exposures; Big Data for Credit Scoring; Overrides; Evaluating Scorecard Performance; Business Applications of Credit Scoring; Limitations; Practice Questions; References; Chapter 6: Probabilities of Default (PD): Discrete-Time Hazard Models; Introduction; Discrete-Time Hazard Models; Which Model Should I Choose?; Fitting and Forecasting; Formation of Rating Classes; Practice Questions; References. 
505 8 |a Chapter 7: Probabilities of Default: Continuous-Time Hazard ModelsIntroduction; Censoring; Life Tables; Cox Proportional Hazards Models; Accelerated Failure Time Models; Extension: Mixture Cure Modeling; Discrete-Time Hazard versus Continuous-Time Hazard Models; Practice Questions; References; Chapter 8: Low Default Portfolios; Introduction; Basic Concepts; Developing Predictive Models for Skewed Data Sets; Mapping to an External Rating Agency; Confidence Level Based Approach; Other Methods; LGD and EAD for Low Default Portfolios; Practice Questions; References. 
505 8 |a Chapter 9: Default Correlations and Credit Portfolio RiskIntroduction; Modeling Loss Distributions with Correlated Defaults; Estimating Correlations; Extensions; Practice Questions; References; Chapter 10: Loss Given Default (LGD) and Recovery Rates; Introduction; Marginal LGD Models; PD-LGD Models; Extensions; Practice Questions; References; Chapter 11: Exposure at Default (EAD) and Adverse Selection; Introduction; Regulatory Perspective on EAD; EAD Modeling; Practice Questions; References; Chapter 12: Bayesian Methods for Credit Risk Modeling; Introduction. 
520 |a The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models.-Understand the general concepts of credit risk management -Validate and stress-test existing models -Access working examples based on both real and simulated data -Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
630 0 0 |a SAS (Computer file) 
630 0 7 |a SAS (Computer file)  |2 fast 
650 0 |a Credit  |x Management  |x Data processing. 
650 0 |a Risk management  |x Data processing. 
650 0 |a Bank loans  |x Data processing. 
650 6 |a Crédit  |x Gestion  |x Informatique. 
650 6 |a Gestion du risque  |x Informatique. 
650 7 |a BUSINESS & ECONOMICS  |x Finance.  |2 bisacsh 
650 7 |a Bank loans  |x Data processing  |2 fast 
650 7 |a Credit  |x Management  |x Data processing  |2 fast 
650 7 |a Risk management  |x Data processing  |2 fast 
700 1 |a Roesch, Daniel,  |d 1968-  |e author. 
700 1 |a Scheule, Harald,  |e author. 
776 0 8 |i Print version:  |a Baesens, Bart.  |t Credit risk analytics.  |d Hoboken, New Jersey : John Wiley & Sons, Inc., [2016]  |z 9781119143987  |w (DLC) 2016024803 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4694230  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30455080 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4694230 
938 |a EBSCOhost  |b EBSC  |n 1357222 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis34128445 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00686765 
938 |a YBP Library Services  |b YANK  |n 13186989 
938 |a YBP Library Services  |b YANK  |n 13187899 
938 |a YBP Library Services  |b YANK  |n 14767125 
994 |a 92  |b IZTAP