Heat transfers in polymer composite materials : forming processes /
This book addresses general information, good practices and examples about thermo-physical properties, thermo-kinetic and thermo-mechanical couplings, instrumentation in thermal science, thermal optimization and infrared radiation.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, N.J. :
ISTE ; John Wiley & Sons, Inc.,
2016.
|
Colección: | Mechanical engineering and solid mechanics series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Table of Contents; Title; Copyright; Preface; 1 Introduction to Heat Transfer During the Forming of Organic Matrix Composites; 1.1. Introduction; 1.2. Examples of injection of short fiber reinforced composites; 1.3. Injection on continuous fiber reinforcements; 1.4. Conclusion: toward a controlled processing; 1.5. Bibliography; 2 Experimental Determination and Modeling of Thermophysical Properties; 2.1. Measurement of specific volume and shrinkage; 2.2. Determination of specific heat capacity of resin and composites; 2.3. Thermal conductivity: a tricky task ... ; 2.4. Conclusions.
- 2.5. Bibliography3 Experimental Determination and Modeling of Transformation Kinetics; 3.1. Introduction; 3.2. What are the most suitable devices to analyze a reaction rate?; 3.3. Modeling of the cure kinetics of thermosetting resins; 3.4. Overall crystallization kinetics of semi-crystalline thermoplastics; 3.5. Concluding remarks; 3.6. Bibliography; 4 Phase Change Kinetics within Process Conditions and Coupling with Heat Transfer; 4.1. Introduction; 4.2. Flow-induced crystallization: experimental observations; 4.3. Flow-induced crystallization: modeling.
- 4.4. Effect of the composite components4.5. Concluding remarks; 4.6. Bibliography; 5 From the Characterization and Modeling of Cure-Dependent Properties of Composite Materials to the Simulation of Residual Stresses; 5.1. Introduction; 5.2. Origin of residual stress; 5.3. Determination of composite properties; 5.4. Modeling of residual stress; 5.5. Conclusion; 5.6. Bibliography; 6 Heat Transfer in Composite Materials and Porous Media: Multiple-Scale Aspects and Effective Properties; 6.1. Introduction; 6.2. Effective thermal conductivity; 6.3. Local-equilibrium model and thermal dispersion.
- 6.4. Local equilibrium versus local non-equilibrium models6.5. Various extensions; 6.6. Conclusions; 6.7. Bibliography; 7 Thermal Optimization of Forming Processes; 7.1. Context of optimization; 7.2. Heat transfer: optimization lever; 7.3. Definition of the optimization criterion; 7.4. Problem modeling; 7.5. Numerical optimization methods; 7.6. Example of process optimization: determination of optimal heat flux setpoint; 7.7. Optimal design of molds; 7.8. Conclusions and outlook; 7.9. Bibliography; 8 Modeling of Thermoplastic Welding; 8.1. Introduction; 8.2. Physics of thermoplastic welding.
- 8.3. Linear viscoelasticity to quantify the macromolecular diffusion8.4. Application to continuous welding of composite tape; 8.5. Application to ultrasonic welding; 8.6. Conclusion; 8.7. Acknowledgments; 8.8. Bibliography; 9 Multiphysics for Simulation of Forming Processes; 9.1. Introduction; 9.2. Multiscale, multiphysics and multidomain modeling; 9.3. Advanced numerical techniques and macroscale simulations; 9.4. Determination of equivalent properties and microscale simulations; 9.5. Conclusions; 9.6. Bibliography.