Cargando…

Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces /

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. We establish: (1) Mapping properties for the double and single layer potential...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Barton, Ariel, 1982- (Autor), Mayboroda, Svitlana, 1981- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1149.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given Lp space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric coefficients.
Notas:"Volume 243, number 1149 (second of 4 numbers), September 2016."
Descripción Física:1 online resource (v, 110 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 105-110).
ISBN:9781470434465
1470434466
ISSN:0065-9266 ;