Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces /
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. We establish: (1) Mapping properties for the double and single layer potential...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2016.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1149. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted Lp classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given Lp space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric coefficients. |
---|---|
Notas: | "Volume 243, number 1149 (second of 4 numbers), September 2016." |
Descripción Física: | 1 online resource (v, 110 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 105-110). |
ISBN: | 9781470434465 1470434466 |
ISSN: | 0065-9266 ; |