Descent construction for GSpin groups /
In this paper we provide an extension of the theory of descent of Ginzburg- Rallis-Soudry to the context of essentially self-dual representations, that is representations which are isomorphic to the twist of their own contragredient by some Hecke character. Our theory supplements the recent work of...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2016.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1148. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction Chapter 2. Some notions related to Langlands functoriality Chapter 3. Notation Chapter 4. The Spin groups $GSpin_m$ and their quasisplit forms Chapter 5. "Unipotent periods" Chapter 6. Notation and statement Chapter 7. Unramified correspondence Chapter 8. Eisenstein series I: Construction and main statements Chapter 9. Descent construction Chapter 10. Appendix I: Local results on Jacquet functors Chapter 11. Appendix II: Identities of unipotent periods Chapter 12. Formulation of the main result in the even case Chapter 13. Notation Chapter 14. Unramified correspondence Chapter 15. Eisenstein series Chapter 16. Descent construction Chapter 17. Appendix III: Preparations for the proof of Theorem 15.0.12 Chapter 18. Appendix IV: Proof of Theorem 15.0.12 Chapter 19. Appendix V: Auxilliary results used to prove Theorem 15.0.12 Chapter 20. Appendix VI: Local results on Jacquet functors Chapter 21. Appendix VII: Identities of unipotent periods.