Cargando…

Descent construction for GSpin groups /

In this paper we provide an extension of the theory of descent of Ginzburg- Rallis-Soudry to the context of essentially self-dual representations, that is representations which are isomorphic to the twist of their own contragredient by some Hecke character. Our theory supplements the recent work of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hundley, Joseph (Autor), Sayag, Eitan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1148.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn952101840
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 160808t20162016riu ob 000 0 eng
010 |a  2016036368 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d GZM  |d BTCTA  |d UIU  |d OCLCF  |d OCLCO  |d COD  |d OCL  |d GZM  |d LLB  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d OCLCQ  |d LEAUB  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1262685563 
020 |a 9781470434441  |q (online) 
020 |a 147043444X  |q (online) 
020 |z 9781470416676  |q (print) 
020 |z 1470416670  |q (print) 
029 1 |a AU@  |b 000069669356 
035 |a (OCoLC)952101840  |z (OCoLC)1262685563 
042 |a pcc 
050 1 0 |a QA671.5 
082 0 0 |a 516.3/62  |2 23 
049 |a UAMI 
100 1 |a Hundley, Joseph,  |e author. 
245 1 0 |a Descent construction for GSpin groups /  |c Joseph Hundley, Eitan Sayag. 
246 3 |a Descent construction for G spin groups 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2016 
300 |a 1 online resource (v, 125 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 243, number 1148 
588 0 |a Online resource; title from PDF title page (viewed June 23, 2016). 
500 |a "Volume 243, number 1148 (first of 4 numbers), September 2016." 
504 |a Includes bibliographical references (pages 121-125). 
520 |a In this paper we provide an extension of the theory of descent of Ginzburg- Rallis-Soudry to the context of essentially self-dual representations, that is representations which are isomorphic to the twist of their own contragredient by some Hecke character. Our theory supplements the recent work of Asgari-Shahidi on the functorial lift from (split and quasisplit forms of) GSpin2n to GL2n. 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Some notions related to Langlands functoriality  |t Chapter 3. Notation  |t Chapter 4. The Spin groups $GSpin_m$ and their quasisplit forms  |t Chapter 5. "Unipotent periods"  |t Chapter 6. Notation and statement  |t Chapter 7. Unramified correspondence  |t Chapter 8. Eisenstein series I: Construction and main statements  |t Chapter 9. Descent construction  |t Chapter 10. Appendix I: Local results on Jacquet functors  |t Chapter 11. Appendix II: Identities of unipotent periods  |t Chapter 12. Formulation of the main result in the even case  |t Chapter 13. Notation  |t Chapter 14. Unramified correspondence  |t Chapter 15. Eisenstein series  |t Chapter 16. Descent construction  |t Chapter 17. Appendix III: Preparations for the proof of Theorem 15.0.12  |t Chapter 18. Appendix IV: Proof of Theorem 15.0.12  |t Chapter 19. Appendix V: Auxilliary results used to prove Theorem 15.0.12  |t Chapter 20. Appendix VI: Local results on Jacquet functors  |t Chapter 21. Appendix VII: Identities of unipotent periods. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Spin geometry. 
650 0 |a Topological spaces. 
650 0 |a Lie algebras. 
650 0 |a Topology. 
650 6 |a Géométrie de spin. 
650 6 |a Espaces topologiques. 
650 6 |a Algèbres de Lie. 
650 6 |a Topologie. 
650 7 |a Lie algebras  |2 fast 
650 7 |a Spin geometry  |2 fast 
650 7 |a Topological spaces  |2 fast 
650 7 |a Topology  |2 fast 
700 1 |a Sayag, Eitan,  |e author. 
710 2 |a American Mathematical Society,  |e publisher. 
776 0 8 |i Print version:  |a Hundley, Joseph.  |t Descent construction for Gspin groups.  |d Providence, Rhode Island : American Mathematical Society, 2016  |z 9781470416676  |w (DLC) 2016030446 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1148. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901867  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0019013287 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4901867 
938 |a YBP Library Services  |b YANK  |n 14681450 
994 |a 92  |b IZTAP