Cargando…

Electrostatic kinetic energy harvesting /

Harvesting kinetic energy is a good opportunity to power wireless sensor in a vibratory environment. Besides classical methods based on electromagnetic and piezoelectric mechanisms, electrostatic transduction has a great perspective in particular when dealing with small devices based on MEMS technol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Basset, Philippe, 1972- (Autor), Blokhina, Elena (Autor), Galayko, Dimitri, 1976- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE, Ltd. ; Wiley, 2016.
Colección:Nanotechnologies for energy recovery set ; v. 3.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn944934370
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 160316s2016 enk ob 001 0 eng d
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d EBLCP  |d N$T  |d DG1  |d N$T  |d UIU  |d IDEBK  |d CDX  |d OCLCF  |d WAU  |d DEBBG  |d KSU  |d DEBSZ  |d RECBK  |d CCO  |d IDB  |d MERUC  |d LOA  |d COCUF  |d DG1  |d K6U  |d LIP  |d PIFAG  |d FVL  |d OCLCQ  |d ZCU  |d U3W  |d OCLCQ  |d WRM  |d STF  |d ICG  |d VT2  |d YDX  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
019 |a 945106119  |a 968174563 
020 |a 9781119007487  |q (electronic bk.) 
020 |a 1119007488  |q (electronic bk.) 
020 |a 1119007496  |q (electronic bk.) 
020 |a 9781119007494  |q (electronic bk.) 
020 |z 9781848217164  |q (print) 
020 |z 1848217161 
029 1 |a AU@  |b 000060080991 
029 1 |a CHNEW  |b 000945230 
029 1 |a CHVBK  |b 480262446 
029 1 |a DEBBG  |b BV043738351 
029 1 |a DEBBG  |b BV044060787 
029 1 |a DEBSZ  |b 480366853 
029 1 |a DEBSZ  |b 485065789 
029 1 |a GBVCP  |b 853520313 
029 1 |a ZWZ  |b 195559568 
029 1 |a AU@  |b 000066769999 
035 |a (OCoLC)944934370  |z (OCoLC)945106119  |z (OCoLC)968174563 
050 4 |a TJ808 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621.042  |2 23 
049 |a UAMI 
100 1 |a Basset, Philippe,  |d 1972-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJqfDmVQFJxmvtxKc789jC 
245 1 0 |a Electrostatic kinetic energy harvesting /  |c Philippe Basset, Elena Blokhina, Dimitri Galayko. 
264 1 |a London :  |b ISTE, Ltd. ;  |a Hoboken, NJ :  |b Wiley,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Nanotechnologies for energy recovery set ;  |v volume 3 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (John Wiley, viewed March 22, 2016). 
520 |a Harvesting kinetic energy is a good opportunity to power wireless sensor in a vibratory environment. Besides classical methods based on electromagnetic and piezoelectric mechanisms, electrostatic transduction has a great perspective in particular when dealing with small devices based on MEMS technology. This book describes in detail the principle of such capacitive Kinetic Energy Harvesters based on a spring-mass system. Specific points related to the design and operation of kinetic energy harvesters (KEHs) with a capacitive interface are presented in detail: advanced studies on their nonlinear features, typical conditioning circuits and practical MEMS fabrication. 
505 0 |a Table of Contents -- Title -- Copyright -- Preface -- Introduction: Background and Area of Application -- 1 Introduction to Electrostatic Kinetic Energy Harvesting -- 2 Capacitive Transducers -- 2.1. Presentation of capacitive transducers -- 2.2. Electrical operation of a variable capacitor -- 2.3. Energy and force in capacitive transducers -- 2.4. Energy conversion with a capacitive transducer -- 2.5. Optimization of the operation of a capacitive transducer -- 2.6. Electromechanical coupling -- 2.7. Conclusions -- 2.8. Appendix: proof of formula [2.32] for the energy converted in a cycle -- 3 Mechanical Aspects of Kinetic Energy Harvesters: Linear Resonators -- 3.1. Overview of mechanical forces and the resonator model -- 3.2. Interaction of the harvester with the environment -- 3.3. Natural dynamics of the linear resonator -- 3.4. The mechanical impedance -- 3.5. Concluding remarks -- 4 Mechanical Aspects of Kinetic Energy Harvesters: Nonlinear Resonators -- 4.1. Nonlinear resonators with mechanically induced nonlinearities -- 4.2. Review of other nonlinearities affecting the dynamics of the resonator: impact, velocity and frequency amplification and electrical softening -- 4.3. Concluding remarks: effectiveness of linear and nonlinear resonators -- 5 Fundamental Effects of Nonlinearity -- 5.1. Fundamental nonlinear effects: anisochronous and anharmonic oscillations -- 5.2. Semi-analytical techniques for nonlinear resonators -- 5.3. Concluding remarks -- 6 Nonlinear Resonance and its Application to Electrostatic Kinetic Energy Harvesters -- 6.1. Forced nonlinear resonator and nonlinear resonance -- 6.2. Electromechanical analysis of an electrostatic kinetic energy harvester -- 6.3. Concluding remarks -- 7 MEMS Device Engineering for e-KEH -- 7.1. Silicon-based MEMS fabrication technologies. 
505 8 |a 7.2. Typical designs for the electrostatic transducer -- 7.3. e-KEHs with an electret layer -- 8 Basic Conditioning Circuits for Capacitive Kinetic Energy Harvesters -- 8.1. Introduction -- 8.2. Overview of conditioning circuit for capacitive kinetic energy harvesting -- 8.3. Continuous conditioning circuit: generalities -- 8.4. Practical study of continuous conditioning circuits -- 8.5. Shortcomings of the elementary conditioning circuits: auto-increasing of the biasing -- 9 Circuits Implementing Triangular QV Cycles -- 9.1. Energy transfer in capacitive circuits -- 9.2. Conditioning circuits implementing triangular QV cycles -- 9.3. Circuits implementing triangular QV cycles: conclusion -- 10 Circuits Implementing Rectangular QV Cycles, Part I -- 10.1. Study of the rectangular QV cycle -- 10.2. Practical implementation of the charge pump -- 10.3. Shortcomings of the single charge pump and required improvements -- 10.4. Architectures of the charge pump with flyback -- 10.5. Conditioning circuits based on the Bennet's doubler -- 11 Circuits Implementing Rectangular QV Cycles, Part II -- 11.1. Analysis of the half-wave rectifier with a transducer biased by an electret -- 11.2. Analysis of the full-wave diode rectifier with transducer biased by an electret -- 11.3. Dynamic behavior and electromechanical coupling of rectangular QV cycle conditioning circuits -- 11.4. Practical use of conditioning circuits with rectangular QV cycle -- 11.5. Conclusion on conditioning circuits for e-KEHs -- Bibliography -- Index -- End User License Agreement. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Energy harvesting. 
650 0 |a Microharvesters (Electronics) 
650 6 |a Récupération d'énergie. 
650 6 |a Microrécupérateurs d'énergie. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Energy harvesting  |2 fast 
650 7 |a Microharvesters (Electronics)  |2 fast 
700 1 |a Blokhina, Elena,  |e author. 
700 1 |a Galayko, Dimitri,  |d 1976-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJdgWGxTB6WkKvFJ4FWv73 
758 |i has work:  |a Electrostatic kinetic energy harvesting (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGTXdKckMYJgKRv4mbxDhd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Erscheint auch als:  |a Basset, Philippe.  |t Electrostatic kinetic energy harvesting.  |d London : ISTE, 2016  |h xiii, 226 Seiten 
830 0 |a Nanotechnologies for energy recovery set ;  |v v. 3. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4451905  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 29819468 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4451905 
938 |a EBSCOhost  |b EBSC  |n 1202094 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29819468 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00668973 
938 |a YBP Library Services  |b YANK  |n 12888522 
938 |a YBP Library Services  |b YANK  |n 12894302 
994 |a 92  |b IZTAP