Tabla de Contenidos:
  • Preface; 1. Introduction; 1.1. Subject of the course; 1.2. Internal forces. Method of sections; 1.3. Stress; 1.4. Displacement, strain; 1.5. General assumptions ; 2. Tension and compression; 2.1. Axially loaded structural members; 2.2. Stresses in an axially loaded member; 2.3. Strength; 2.4. Strain and elongation; 2.5. Deflections; 2.6. Stiffness; 2.7. Elastic strain energy; 2.8. Structures composed of axially loaded straight rods; 2.9. Peculiarities of statically indeterminate structures; 2.10. Influence of the vertical rod weight; 3. Mechanical properties of structural materials.
  • 4. Geometrical properties of cross sections5. Shearing. Torsion; 5.1. Shearing stresses in connections; 5.2. Bearing stresses in connections; 5.3. Stresses in circular members under torsion; 5.4. Angle of circular member twist; 5.5. Solid noncircular members in torsion; 6. Bending of beams; 6.1. Reactions, shearing forces and bending moments in beams; 6.2. Differential relationships between load, shearing force and bending moment functions; 6.3. Diagrams of shearing force and bending moment; 6.4. Pure bending in beams. Normal stresses; 6.5. Shearing stresses in beams.
  • 6.6. Rational shapes of beams6.7. Special cases of beam strength investigation; 7. Deflection of beam; 7.1. Strain. Curvature; 7.2. Displacement; 7.3. Techniques for determining beam displacements; 7.4. The moment-area technique; 7.5. Stiffness requirements; 8. Stability of columns. Buckling; 8.1. Stability of equilibrium; 8.2. The Euler's formula; 8.3. Design of columns; 9. States of stress and strain; 9.1. State of stress. Principal stresses; 9.2. Plane stress; 9.3. State of strain; 9.4. Generalized Hooke's law; 9.5. Dilatation (volumetric strain).
  • 12.3. Principle of energy conservation. Impact loading13. Influence of plastic deformation; 13.1. Ductile materials; 13.2. Structures under tension or compression; 13.3. Structures under torsion; 13.4. Structures under bending; 13.5. Permanent strains and residual stresses; 14. Local effects; 14.1. Stress concentration; 14.2. Cracks and fracture; 14.3. Contact stresses; 15. Variable stresses. Fatigue; 15.1. Fatigue; 15.2. Endurance; Appendix. Examples of problem solution; A1. Design of a frame; A2. A statically indeterminate beam; Lithuanian-English vocabulary. Mechanics of materials; Index.