Moduli of double EPW-sextics /
The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the...
| Clasificación: | Libro Electrónico | 
|---|---|
| Autor principal: | |
| Formato: | Electrónico eBook | 
| Idioma: | Inglés | 
| Publicado: | 
      Providence, Rhode Island :
        
      American Mathematical Society,    
    
      2016.
     | 
| Colección: | Memoirs of the American Mathematical Society ;
              no. 1136.             | 
| Temas: | |
| Acceso en línea: | Texto completo | 
                Tabla de Contenidos: 
            
                  - Introduction
 - Preliminaries
 - One-parameter subgroups and stability
 - Plane sextics and stability of lagrangians
 - Lagrangians with large stabilizers
 - Description of the GIT-boundary
 - Boundary components meeting I in a subset of X[subscript W] [cup] {x, x[superscript v]}
 - The remaining boundary components
 - Appendix A. Elementary auxiliary results
 - Appendix B. Tables.
 


