Cargando…

Moduli of double EPW-sextics /

The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'Grady, Kieran G., 1958- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2016.
Colección:Memoirs of the American Mathematical Society ; no. 1136.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn938499830
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 160111t20162015riu ob 000 0 eng d
040 |a COO  |b eng  |e rda  |e pn  |c COO  |d UIU  |d GZM  |d OCLCF  |d LLB  |d GZM  |d OCLCA  |d YDX  |d EBLCP  |d IDB  |d INT  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKAHL  |d LOA  |d OCLCO  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
020 |a 9781470428242  |q (online) 
020 |a 1470428245  |q (online) 
020 |z 9781470416966  |q (alk. paper) 
020 |z 1470416964  |q (alk. paper) 
035 |a (OCoLC)938499830 
050 4 |a QA573  |b .O47 2016 
082 0 4 |a 516.3/53  |2 23 
049 |a UAMI 
100 1 |a O'Grady, Kieran G.,  |d 1958-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjvQVPkmPMqTFJMcF7dJDq 
245 1 0 |a Moduli of double EPW-sextics /  |c Kieran G. O'Grady. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2016. 
264 4 |c ©2015 
300 |a 1 online resource (ix, 172 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 240, number 1136 
588 0 |a Online resource; title from PDF title page (viewed February 16, 2016). 
500 |a "Volume 240, number 1136 (second of 5 numbers), March 2016." 
504 |a Includes bibliographical references (pages 171-172). 
505 0 0 |6 880-01  |t Introduction --  |t Preliminaries --  |t One-parameter subgroups and stability --  |t Plane sextics and stability of lagrangians --  |t Lagrangians with large stabilizers --  |t Description of the GIT-boundary --  |t Boundary components meeting I in a subset of X[subscript W] [cup] {x, x[superscript v]} --  |t The remaining boundary components --  |g Appendix A.  |t Elementary auxiliary results --  |g Appendix B.  |t Tables. 
520 |a The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Surfaces, Sextic. 
650 0 |a Equations, Sextic. 
650 0 |a Permutation groups. 
650 0 |a Hypersurfaces. 
650 0 |a Geometry, Algebraic. 
650 4 |a Equations, Sextic. 
650 6 |a Surfaces sextiques. 
650 6 |a Équations sextiques. 
650 6 |a Groupes de permutations. 
650 6 |a Hypersurfaces. 
650 6 |a Géométrie algébrique. 
650 7 |a Equations, Sextic  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Hypersurfaces  |2 fast 
650 7 |a Permutation groups  |2 fast 
650 7 |a Surfaces, Sextic  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Moduli of Double EPW-Sextics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGcM9cMr7CfK8B9CDjj4md  |4 https://id.oclc.org/worldcat/ontology/hasWork 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1136. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901855  |z Texto completo 
880 8 |6 505-00/(S  |a 5.4. Proof of Theorem 5.1.1 assuming the results of Chapters 6 and 75.4.1. Dimensions; 5.4.2. No inclusion relations; Chapter 6. Boundary components meeting ℑ in a subset of _{ }∪{, ^{∨}}; 6.1. \gB_{\cC₁}; 6.1.1. First results; 6.1.2. Properly semistable points of ^{\sF}_{\cC₁}; 6.1.3. Semistable lagrangians with dimΘ_{ }≥2 or _{, }=\PP().; 6.1.4. Analysis of Θ_{ } and _{, }; 6.1.5. Wrapping it up; 6.2. \gB_{\cA}; 6.2.1. The GIT analysis; 6.2.2. Analysis of Θ_{ } and _{, }; 6.2.3. Wrapping it up; 6.3. \gB_{\cD}; 6.3.1. Quadrics associated to ∈ ^{\sF}_{\cD} 
880 8 |6 505-01/(S  |a 6.3.2. The GIT analysis6.3.3. Analysis of Θ_{ } and _{, }; 6.3.4. Wrapping it up; 6.4. \gB_{\cE₁}; 6.4.1. The GIT analysis; 6.4.2. Analysis of Θ_{ } and _{, }; 6.4.3. Wrapping it up; 6.5. \gB_{\cE^{∨}₁}; 6.5.1. The GIT analysis; 6.5.2. Analysis of Θ_{ } and _{, }; 6.5.3. Wrapping it up; 6.6. \gB_{\cF₁}; 6.6.1. The GIT analysis; 6.6.2. Analysis of Θ_{ } and _{, }; 6.6.3. Wrapping it up; Chapter 7. The remaining boundary components; 7.1. \gB_{\cF₂}; 7.2. \gB_{\cF₂}∩\gI; 7.2.1. Set-up and statement of the main results. 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444997 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4901855 
938 |a YBP Library Services  |b YANK  |n 14681438 
994 |a 92  |b IZTAP