|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn938499830 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
160111t20162015riu ob 000 0 eng d |
040 |
|
|
|a COO
|b eng
|e rda
|e pn
|c COO
|d UIU
|d GZM
|d OCLCF
|d LLB
|d GZM
|d OCLCA
|d YDX
|d EBLCP
|d IDB
|d INT
|d OCLCQ
|d LEAUB
|d OCLCQ
|d UKAHL
|d LOA
|d OCLCO
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
020 |
|
|
|a 9781470428242
|q (online)
|
020 |
|
|
|a 1470428245
|q (online)
|
020 |
|
|
|z 9781470416966
|q (alk. paper)
|
020 |
|
|
|z 1470416964
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)938499830
|
050 |
|
4 |
|a QA573
|b .O47 2016
|
082 |
0 |
4 |
|a 516.3/53
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a O'Grady, Kieran G.,
|d 1958-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjvQVPkmPMqTFJMcF7dJDq
|
245 |
1 |
0 |
|a Moduli of double EPW-sextics /
|c Kieran G. O'Grady.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2016.
|
264 |
|
4 |
|c ©2015
|
300 |
|
|
|a 1 online resource (ix, 172 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 240, number 1136
|
588 |
0 |
|
|a Online resource; title from PDF title page (viewed February 16, 2016).
|
500 |
|
|
|a "Volume 240, number 1136 (second of 5 numbers), March 2016."
|
504 |
|
|
|a Includes bibliographical references (pages 171-172).
|
505 |
0 |
0 |
|6 880-01
|t Introduction --
|t Preliminaries --
|t One-parameter subgroups and stability --
|t Plane sextics and stability of lagrangians --
|t Lagrangians with large stabilizers --
|t Description of the GIT-boundary --
|t Boundary components meeting I in a subset of X[subscript W] [cup] {x, x[superscript v]} --
|t The remaining boundary components --
|g Appendix A.
|t Elementary auxiliary results --
|g Appendix B.
|t Tables.
|
520 |
|
|
|a The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Surfaces, Sextic.
|
650 |
|
0 |
|a Equations, Sextic.
|
650 |
|
0 |
|a Permutation groups.
|
650 |
|
0 |
|a Hypersurfaces.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
4 |
|a Equations, Sextic.
|
650 |
|
6 |
|a Surfaces sextiques.
|
650 |
|
6 |
|a Équations sextiques.
|
650 |
|
6 |
|a Groupes de permutations.
|
650 |
|
6 |
|a Hypersurfaces.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a Equations, Sextic
|2 fast
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Hypersurfaces
|2 fast
|
650 |
|
7 |
|a Permutation groups
|2 fast
|
650 |
|
7 |
|a Surfaces, Sextic
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Moduli of Double EPW-Sextics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGcM9cMr7CfK8B9CDjj4md
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1136.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=4901855
|z Texto completo
|
880 |
8 |
|
|6 505-00/(S
|a 5.4. Proof of Theorem 5.1.1 assuming the results of Chapters 6 and 75.4.1. Dimensions; 5.4.2. No inclusion relations; Chapter 6. Boundary components meeting ℑ in a subset of _{ }∪{, ^{∨}}; 6.1. \gB_{\cC₁}; 6.1.1. First results; 6.1.2. Properly semistable points of ^{\sF}_{\cC₁}; 6.1.3. Semistable lagrangians with dimΘ_{ }≥2 or _{, }=\PP().; 6.1.4. Analysis of Θ_{ } and _{, }; 6.1.5. Wrapping it up; 6.2. \gB_{\cA}; 6.2.1. The GIT analysis; 6.2.2. Analysis of Θ_{ } and _{, }; 6.2.3. Wrapping it up; 6.3. \gB_{\cD}; 6.3.1. Quadrics associated to ∈ ^{\sF}_{\cD}
|
880 |
8 |
|
|6 505-01/(S
|a 6.3.2. The GIT analysis6.3.3. Analysis of Θ_{ } and _{, }; 6.3.4. Wrapping it up; 6.4. \gB_{\cE₁}; 6.4.1. The GIT analysis; 6.4.2. Analysis of Θ_{ } and _{, }; 6.4.3. Wrapping it up; 6.5. \gB_{\cE^{∨}₁}; 6.5.1. The GIT analysis; 6.5.2. Analysis of Θ_{ } and _{, }; 6.5.3. Wrapping it up; 6.6. \gB_{\cF₁}; 6.6.1. The GIT analysis; 6.6.2. Analysis of Θ_{ } and _{, }; 6.6.3. Wrapping it up; Chapter 7. The remaining boundary components; 7.1. \gB_{\cF₂}; 7.2. \gB_{\cF₂}∩\gI; 7.2.1. Set-up and statement of the main results.
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444997
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4901855
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14681438
|
994 |
|
|
|a 92
|b IZTAP
|