Moduli of double EPW-sextics /
The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2016.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1136. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds. |
---|---|
Notas: | "Volume 240, number 1136 (second of 5 numbers), March 2016." |
Descripción Física: | 1 online resource (ix, 172 pages) |
Bibliografía: | Includes bibliographical references (pages 171-172). |
ISBN: | 9781470428242 1470428245 |
ISSN: | 0065-9266 ; |